EXTRAIT D'UNE LETTRE
de M. DE LA HIRE, touchant le Problème contenu dans
la Méthode Géométrique de M. HALLEY, pour trouver
les aphasies, les excentricités & la proportion des Orbes
des Planetes principales.

PROBLEME.
Trois lignes se rencontrant dans le même Foyer d'une Ellipse, dont les an-
gles et les longueurs sont données, trouver le Diamètre transverse &
l'autre Foyer de l'Ellipse.

1677. P. 93.
On seulement le Problème de M. Halley n'a pas be-
soin d'Hyperboles pour être construit; mais s'il n'a-
voir montré par le Calcul analytique, qui est à la fin de
sa Proposition, que ce Problème est plan de sa nature,
il n'aurait pas trouvé une manière plus simple, puisque
pour décrire une Section conique, il aurait été obligé d'y
en employer deux autres. Sans doute la difficulté qu'il a
trouvée dans la construction de son équation quarree, qui
est embarassée de quantité de termes, lui a fait préfé-
er la première manière à celle-ci. Il est aisé de connoi-
tre que ce Problème se réduit à un autre que M. Viete a
démontré d'une manière très-elegante dans son Apol-lo-
nius Gallus, & on aurait pu s'en servir fort à propos.

Cependant sans m'arrêter à la réduction que l'on en
peut faire à celui de M. Viete, voici de quelle manière
je l'ai construit.

Soient les trois points donnez B, C, D, qui doivent être
dans une ligne elliptique dont F est le foyer, qui est aussi
donné de position, & il faut décrire l'ellipse.

Par les points B, C, soit menée la ligne B, C, G, & l'an-
gle B, F, C, étant divisé en deux également, soit F, G
perpendiculaire à la ligne qui le divise, laquelle rencon-
trera la ligne B C, ou lui sera parallèle; si elles sont paral-
lèles, la ligne perpendiculaire menée du point F à ces parallèles, est l'axe ; mais si elle la rencontre en G, soit trouvée de la même manière le point H, qui est la rencontre des deux lignes BD, & FH, qui est perpendiculaire à celle qui divise en deux également l'angle BFD. On en pourrait trouver encore un autre à cause de l'angle DFC, mais il n'en faut que deux. La ligne EFA qui passant par le point F est perpendiculaire à GH, est l'axe de l'ellipse.

Par quelqu'un des points donnez, D, soit menée ODL perpendiculaire à l'axe, & soit fait LO égale à FD, puis soit tiré EOM ; & enfin ayant fait les angles A FM, EFN, chacun égal à un demi droit, & des points M N ayant mené les perpendiculaires à l'axe MA, NP, les points A & P sont les extrémités de l'axe requis. Il y a quelques observations & abrégez, suivant les cas différents qu'il n'est pas nécessaire d'expliquer ici, puisque ce que j'en ai dit est suffisant.

Cette construction est simple, & elle est tirée de la Proposition de ma Méthode des Sections Coniques, & du premier des deux Théorèmes que je mis au jour le mois de Septembre dernier 1676.

Nouvelle Théorie de la Lune.

Par M. Cassini.

Pour fondement de cette Théorie, M. Cassini suppose par les Observations du diamètre de la Lune : 1° Que dans les oppositions de la Lune au Soleil, qui arrivent dans son Périgée, la distance de la Lune à la Terre, est de 102 diamètres de la Lune. 2° Que dans les Quadratures qui arrivent dans le Périgée, la distance de la Lune à la Terre est de 107 diamètres. 3° Que dans les oppositions qui arrivent dans l'Apogée, la distance de la Lune