DE L'ORIGINE ET DU PROGRES
DE
L'ASTRONOMIE,
ET DE SON USAGE
DANS LA GEOGRAPHIE
ET
DANS LA NAVIGATION.

On ne peut pas douter que l'Astronomie n'ait
été inventée dès le commencement du Mon-
de. Comme il n'y a rien de plus surprenant
que la régularité du mouvement de ces grands
Corps lumineux qui tournent incessamment autour de la
Terre, il est aisé de juger qu'une des premières curiosités
Rec. de l'At. Tom. VIII.
des Hommes a été de considérer leurs cours, & d’en ob-
server les périodes. Mais ce ne fut pas seulement la curio-
sité qui porta les Hommes à s’appliquer aux spécula-
tions Astronomiques : on peut dire que la nécessité même les y
obligea. Car si l’on n’observe les Saisons qui se distinguent
par le mouvement du Soleil, il est impossible de réussir
dans l’Agriculture ; si l’on ne prévoit les temps commodes
pour voyager, on ne peut pas faire le Commerce ; si l’on
ne détermine une fois la grandeur du Mois & de l’Année,
on ne peut ni établir d’ordre certain dans les affaires civi-
les, ni marquer les jours destinés à l’exercice de la Reli-
gion : ainsi l’Agriculture, le Commerce, la Politique, &
la Religion même ne pouvant se passer de l’Astronomie,
il est évident que les hommes ont été obligés de s’appli-
quér à cette Science dès le commencement du Monde.

L’Histoire tant sacrée que profane confirme cette ve-
rité. Ce qui est dit dans les Livres sacrés des années qu’ont
vécu les anciens Patriarches, est une preuve certaine que
les premiers hommes observoient le mouvement des As-
très. Car s’ils n’eussent tenu un compte exact du nombre
des jours que dure la variation des Phases de la Lune qui
leur servirent à déterminer les mois, & du nombre des
mois pendant lesquels le Soleil s’approchant peu-à-peu du
Zenith, & enfin s’en éloignant, fit la vicissitude de l’accrois-
sement & de la diminution des jours, qui leur
servit à déterminer la grandeur de l’année, ils n’auraient
pu marquer le nombre des années que chaque Patriarche
avait vécu, ni le temps de leur naissance & de leur mort, aux
précises que Moïse l’a rapporté dans la Genèse.

Et certainement il fallait bien qu’en ce premier âge du
Monde on eût observé les Astres avec beaucoup d’appli-
cation, puisque par les circonstances de l’Histoire du Dé-
luge qui sont aussi rapportées dans la Genèse, on voit que
l’année, dès le temps du Déluge, était réglée suivant les
mouvements du Soleil & de la Lune : ce qui suppose un
nombre infini d'Observations. Encore auroit-on de la peine à concevoir comment avec toute l'application que l'on peut s'imager que les premiers hommes ayent eu à observer le ciel, ils auroient pu en l'espace du temps qui s'est écoulé depuis la création du Monde jusqu'au Déluge, acquérir tant de connaissance du mouvement des Astres; si leur vie n'avait pas été plus longue que la nôtre. Mais l'expérience que leur donnoit la longue durée de leur vie étoit un très-grand avantage pour l'avancement de l'Astronomie. Jolèphe a estimé cette science si nécessaire, qu'il n'a pas fait difficulté de dire qu'une des raisons pourquoi Dieu accordoit aux premiers hommes une si longue vie, c'étoit afin de leur faciliter la connaissance du mouvement des Astres.

Rien ne fait mieux connoître l'antiquité de l'Astronomie, que ce que Ptolomée rapporte des Observations célestes sur lesquelles Hipparque réforma cette science il y a près de deux mille ans. Il dit que ceux qu'on appelloit dès le temps d'Hipparque les anciens Astronomes, avoient observé que non-seulement la Lune se meuut inégalement tant en longitude qu'en latitude, mais aussi que les termes de son inégalité, que l'on a depuis appelé l'Apogée & le Perigée, parcourent successivement tous les degrez du Zodiacque; & que fa plus grande latitude, tant du côté du Septentrion que du côté du Midi, est transportée dans la fuite du temps par tous les degrez de ce même cercle; de sorte qu'à chaque révolution la Lune coupe l'Ecliptique en differens degrez: Que ces Astronomes, pour trouver des regles de ces inégalitez, avoient comparé ensemble quantité d'Eclipses de Lune, par le moyen desquelles ils avoient cherché de longues periodes de temps, qui étant égales entre elles comprirent chacune un égal nombre de mois inégaux: Qu'Hipparque, pour corriger ces longues periodes déjà trouvées, avoit choit dans un grand nombre d'Observations anciennes celles
qui étoient propres à fon defflein; & que les ayant comparées entr'elles, il auroit remarqué que le Soleil & la Lune étant partis ensemble du même point du ciel, se rencontrent 4167 fois en 126007 jours & une heure, après que la Lune a fait 4612 révolutions par le Zodiaque à l'égard des Étoiles fixes, moins sept degrés & demi, & qu'elle a achevé 4573 retours au point de fon apogée: Que néanmoins après cette période de 4573 révolutions, les Éclipses ne reviennent pas de même grandeur, mais seulement après 5458 mois. Ce témoignage de Ptolomée montre évidemment que quelques-unes de ces Observations célestes dont il servit Hipparque étoient fort anciennes. Car il faut un très-long intervalle de temps, & un très-grand nombre d'Observations pour pouvoir conclure que ces longues périodes qu'Hipparque comparoit ensemble, sont uniformes; & l'on n'aura pas de peine à croire qu'il faille tant d'Observations pour vérifier cette uniformité, si l'on fait réflexion qu'entre toutes celles que nous avons des Éclipses arrivées depuis 2500 ans jufqu'à présent, il nes'en trouve pas deux qui soient éloignées entr'elles de l'espace d'une de ces longues périodes.

Ce qui pourroit rendre suspecte l'antiquité de ces Observations dont il servit Hipparque, c'est qu'il n'y a qu'environ 2200 ans depuis le temps où vivoit cet Astronome jufqu'au Déluge, qui semble avoir enseveli tout ce qu'il y avoit de monumens des Arts & des Sciences. Mais il ne faut pas s'étonner que la mémoire des Observations Astronomiques faites pendant le premier âge du Monde, ait pu se conserver même après le Déluge, puisque Jofèphe rapporte que les descendants de Seth pour conserver à la postérité la mémoire des Observations célestes qu'ils avoient faites; en graverent les principales sur deux colonnes, l'une de pierre, & l'autre de brique; que celle de pierre résista aux eaux du déluge, & que de son temps même on en voyoit encore des vestiges dans la Syrie.
Il est donc constant que dès le premier âge du Mon-
de, les hommes avoient déjà fait de grands progrès dans
la science du mouvement des astres. On pourroit même
avancer qu'ils en avoient beaucoup plus de connoissance
que l'on n'en a eu long-temps depuis le Déluge ; s'il est
bien vrai que l'Année dont les anciens Patriarches se ser-
voient fut de la grandeur de celles qui composent la
grande période de 600 ans, dont il est fait mention dans
les Antiquitez des Juifs écrites par Josèphe. Nous ne trou-
vons dans les monumens qui nous restent de toutes les au-
tres Nations, aucun vestige de cette période de 600 ans,
qui est une des plus belles que l'on ait encore inventées.
Car supposant le mois lunaire de 29 jours 12 heures 44
minutes & 3 secondes, on trouve que 219146 jours &
demi font 7411 mois lunaires ; & ce même nombre de
219146 jours & demi donne 600 années solaires chacune
de 365 jours, 5 heures, 51 minutes, & 36 secondes. Si
Cette année est celle qui étoit en usage avant le Déluge,
comme il y a beaucoup d'apparence, il faut avoüer que
les anciens Patriarches connoissoient déjà avec beaucoup
de précision le mouvement des Astres : car ce mois lu-
naire s'accorde, à une seconde près, avec celui qui a été
déterminé par les Astronomes modernes ; & l'année so-
laire est plus juste que celle d'Hipparche & de Ptolomée,
qui donnent à l'année 365 jours, 5 heures, 55 minutes
& 12 secondes.

Après le Déluge, les hommes ayant été dispersés par
toute la terre, les Rois de chaque Peuple eurent un très-
grand soin de cultiver l'Astronomie, comme les Histo-
riens de toutes les nations en font foi. Uranus Roy des
Peuples qui les premiers habiterent les bords de l'Océan
Atlantique, passa pour être de la race des Dieux, parce
qu'il ait une connoissance particulière du Ciel. Zo-
roaste Roy de la Bactriane n'a été fameux que parce qu'il
excelloit dans l'Astronomie. Les premiers Rois de la
Ciné se sont acquis une gloire immortelle, pour avoir fait faire il y a près de 4000 ans, c'est-à-dire peu après le Déluge, quantité d'Observations Astronomiques, que les Chinois ont conservées jusqu'à présent. Enfin Prométhée Roy de Scythie, fils de Japet, que plusieurs Auteurs célèbres soient-ils le même que Japhet l'un des enfans de Noé, enseigna à son peuple ignorant & stupide la science des Astres : ce qui a donné lieu aux Poètes de feindre qu'il avait dérobé le feu du Ciel, & qu'il avait animé des Statues. Les peuples eurent tant de vénération pour ces grands hommes qui s'appliquèrent à l'Astronomie, qu'ils leur rendirent des honneurs divins, & leur bâtirent des temples & des autels.

Mais quoi qu'il en fût de toutes ces histoires dont la chronologie n'est peut-être pas assez exacte, il est certain que peu de temps après le déluge, les Chaldéens observaient le Ciel avec beaucoup de soin. Philon témoigne que Tharé qui étoit né en Chaldée plus de cent ans avant la mort de Noé, étoit fort appliqué à l'Astronomie, & qu'il l'enseigna à son fils Abraham. Josoph a ajouté que Abra- ham parvint à la connoissance du vrai Dieu par la contemplation des Astres, & qu'étant passé de Chaldée en Egypte, il y apporta la connaissance de l'Astronomie. On fairoit alors tant d'estime de cette science, qu'il n'y avait que les Rois, ou les Prêtres qui en fissent profession. Et c'est peut-être ce qui a donné lieu à Virgile, lorsqu'il parle du banquet de Didon & d'Enée, d'introduire Iopas qui chante ce qu'Atlas Roy de Mauritanie avait enseigné des Éclipses du Soleil & de la Lune, & de la situation & du mouvement des Étoiles.

L'Astronomie étant donc si estimée en Egypte, il ne faut pas s'étonner si on l'enseigna à Moïse qui fut élevé en Prince par les soins de la fille de Pharaon. Céleste d'Alexandrie dit que Moïse fit de grands progrès dans cette science, & qu'ensuite il l'enseigna aux Juifs. Ainsi
l'Astronomie étant venue de Chaldée en Egypte, passa d'Egypte en Judée, & fut en peu de temps portée dans la Phénicie, & dans tous les pays voisins.

Jusques-là les Astronomes ne s'étoient point encore avizez d'appliquer leurs speculations aux usages de la Navigation. Mais comme les Phéniciens étoient aussi entreprenans qu'industrieux, ils commencèrent à se servir des observations célestes pour se conduire dans les voyages de long cours; & ils furent si heureusement profiter des avantages de l'Astronomie, qu'ils Porterent le commerce dans des pays très-eloignez, se rendirent les maîtres de la mer, établirent des Colonies en plusieurs endroits sur les côtes de la mer Méditerranée, & étant entrez dans l'Océan, s'emparerent de l'Isle de Cadis, & y bâtirent une ville très-magnifique. La réputation qu'ils avoient d'exceller dans la Navigation, les fit appeller en divers royaumes pour conduire les flottes des Princes étrangers. Salomon leur donna la conduite de la flotte qu'il envoya par la mer Rouge en Ophir; d'où ils rapporterent beaucoup d'or, & quantité des mêmes marchandises que les Européens apportent présentement de l'Afrique méridionale & des Indes. Nehchao seconde du nom, Roy d'Egypte, les employa aussi pour conduire sa flotte, qui fit un autre voyage bien plus long, si l'on en croit Hérodotte; car il dit qu'ayant costoyé les bords de la mer Rouge, elle entra dans l'Océan, traversa la Zone torride, fit le tour de l'Afrique, & retourna en Egypte par la mer Méditerranée.

Ce qui rendoit les Phéniciens si hardis à entreprendre de longs voyages, c'est qu'ils conduiçoient leurs vaisseaux par l'observation d'une des Etoiles de la petite Ourse, qui estant proche de ce point qui est immobile dans le Ciel, & que l'on nomme Pole, est la plus propre de toutes pour servir de guide dans la Navigation. Les autres peuples moins habiles dans l'Astronomie n'observoient...
dans leurs voyages de mer que la grande Ourse ; mais comme cette constellation est trop éloignée du Pôle pour pouvoir servir à guider sûrement des vaisseaux dans de grands voyages, ils n'osèrent entrer si avant en mer qu'ils perçussent les côtes de vue ; et s'il arrivoir qu'un orage les jetât en pleine mer, ou en quelque rade inconnue, il leur étoit impossible de reconnoître par l'inspection du Ciel, en quel endroit du monde la tempête les avoit portez : de manière qu'ils étoient obligez de voguer à l'avanture, ou de descendre à terre pour chercher des habitans qui leur apprisent quelle route ils devoient tenir.

C'est pourquoi Virgile après avoir décrit la tempête qui dispersa la flotte d'Énée sur les côtes d'Afrique, fait descendre Énée à terre pour aller chercher quelqu'un qui lui apprit quel étoit le lieu où l'orage l'avoit jeté. Les Grecs étoient donc obligez de naviger toujours terre à terre, ne pouvoient faire de longs voyages, ou ne les fairoient qu'en beaucoup de temps : d'où vient qu'ils ont tant vanté plusieurs voyages qui furent à présent très-faciles & très-ordinaires. L'expédition des Argonautes qui allèrent de Grèce à la Colchide située sur la côte orientale de la mer Noire, parut alors un exploit si extraordinaire, que pour en rendre la mémoire éternelle, on plaça entre les constellations la figure du vaisseau qui avoit fait ce voyage, qu'à présent de simples barques sont tous les jours.

Mais enfin Thales ayant apporté de Phénicie en Grèce la science des Astres, apprit aux Grecs à connaître la constellation de la petite Ourse, & à s'en servir pour se conduire dans la Navigation. Il leur enseigna aussi la théorie du mouvement du Soleil & de la Lune, par laquelle il rendit raison de l'augmentation & de la diminution des jours, il détermina le nombre des jours de l'année solaire, & non-seulement il expliqua la cause des Éclipses, mais encore il montra l'art de les prédire, qu'il mit même
même en pratique, prédisant une Eclipse qui arriva peu de temps après. Le mérite d’un sçavoir alors si rare le fit passer pour l’oracle de son temps ; & lui fit donner la première place entre les sept Sages de la Grèce.

Il eut pour disciple Anaximandre, à qui Pline & Dio- gene Laërce attribuent l’invention de la Sphere, c’est-à-dire de la représentation du Globe terrestre, ou, comme dit Strabon, des Cartes géographiques. On dit qu’Anaximandre dressa aussi à Lacedemone un Gnomon, par le moyen duquel il observa les Equinoxes & les Solfícès ; & qu’il détermina l’obliquité de l’Ecliptique plus exactement que l’on n’avait fait jusqu’alors ; ce qui étoit nécessaire pour diviser le Globe terrestre en cinq zones, & pour distinguer les climats qui ont depuis servi aux Géographes à faire connaître la situation de tous les lieux de la terre.

Sur les Instructions que les Grecs avoient reçues de Thalès & d’Anaximandre, ils hazardèrent d’aller en pleine mer, & faisaient voile en divers Pays éloignez, ils y fonderent plusieurs Colonies.

Les Phocéens fuyans la tyrannie des Perses, firent les premiers de longs Navires avec quoi ils navigèrent dans le Golfe Adriatique, passèrent dans les mers de Toscane, des Gaules & de l’Espagne, & allèrent jusqu’à Tartare aux bords de l’Ocean. D’autres Peuples de la Grèce envoyèrent en divers endroits quantité de Colonies, dont les plus célèbres furent celles qu’ils fonderent à Tarente, dans cette partie de l’Italie, qui fut appelée la Grande-Grece, & celle qu’ils établirent sur la Côte des Gaules à Marseille, qui devint une des plus fameuses Villes du monde & par les sciences qui y fleurirent, & par sa grande puissance sur la mer. A leur exemple les Corinthiens ayant passé en Sicile fonderent une Colonie à Syracuse ; & d’autres Peuples de la Grèce, après que le Roy Amasis leur eut permis de trafiquer en Égypte, allèrent s’établir dans la...
DE L'ORIGINE ET DU PROGRÈS

Ville de Naukrate, au-dessous d'une des embouchures occidentales du Nil.

L'Astronomie fut bientôt récompensée des avantages qu'elle avait procuré à la Navigation. Car le Commerce ayant ouvert le reste du Monde aux Sçavans de la Grece, ils tirèrent de grandes lumières des conférences qu'ils eurent avec les Prêtres d'Egypte, qui faisaient une profession particulière de la science des Astres. Ils apprirent aussi beaucoup de choses des Philosophes de la Secte de Pythagore en Italie, qui avaient fait de si grands progrès dans cette science, qu'ils offrent renverser les sentiments reçus de tout le monde sur l'ordre de la nature, en attribuant le repos perpetuel au Soleil, & le mouvement à la Terre. Ils profiterent encore du commerce qu'ils eurent avec les Druides, qui entre plusieurs autres choses, dit Jules Cesar, qu'ils apprenaient à la jeunesse, enseignaient particulièrement ce qui regarde le mouvement des Astres, & la grandeur du Ciel & de la Terre, c'est-à-dire, l'Astronomie & la Géographie.

En effet, quoique les anciens Peuples des Gaules, qui ont toujours eu beaucoup plus de soin de faire de grandes actions & d'entreprendre de grandes choses que d'écrire l'histoire, ne nous aient point laissé de monuments qui nous fassent connaître qu'ils n'ont pas moins travaillé à l'avancement des Sciences que d'autres Nations qui s'en attribuent toute la gloire, nous savons qu'ils ont été très-habiles dans la Navigation. Témoin les noms de Galice, de Portugal, & de Celtiberie sur les Côtes d'Espagne, le nom de Celto-Scythe sur le Pont-Euxin, & celui de Gallo-Grece ou Galatie dans l'Asie mineure : qui font des monuments éternels de l'origine des Peuples qui ont conquises ces Pays, & qui sont venus s'y établir.

Mais néanmoins la négligence des Gaulois à écrire leurs Observations, il en reste encore assez pour faire connaître qu'ils n'avaient pas moins d'esprit que de valeur,
Strabon nous a conservé la mémoire d'une Observation célèbre que Pytheas fit à Marseille, il y a plus de deux mille ans, touchant la proportion de l'ombre du Soleil à la longueur d'un style au temps du Solstice. Si l'on scavoit exactement les circonstances de cette Observation, elle serviroit à réfoudre une question célèbre, qui est de scavoir si l'obliquité de l'Ecliptique est sujette à quelque changement. Car en comparant l'Observation de Pytheas avec une autre semblable que M. Gassendi a auffi faite à Marseille il y a quarante ans, il seroit facile de décider cette difficulté, qui est une des plus importantes de l'Astronomie. Mais comme nous n'avons qu'un extrait, & encore assez imparfait, de l'Observation de Pytheas, il est assez difficile d'en rien conclure de bien assuré. Car il ne nous reste de cette Observation que ce que l'on en trouve dans Strabon; & tout ce qu'il en dit est tiré d'Hipparque, qui n'en a parlé que par rapport à la Géographie: de sorte que les Géographes n'étant pas obligés d'examiner les mesures avec autant de précision que les Astronomes, on peut douter si Hipparque n'a point négligé la fraction qui fait la différence qui se trouve entre l'Observation qu'il rapporte de Pytheas, & celle de M. Gassendi. De plus, Hipparque ne dit pas immédiatement quelle est la proportion que Pytheas a observée à Marseille, mais seulement que cette proportion est la même que l'on a depuis trouvée à Constantinople. On est très assuré de la hauteur du Pole de Marseille par les Observations de plusieurs personnes de l'Académie Royale, qui l'ont observée plusieurs fois & en différentes manières: mais pour la hauteur du Pole de Constantinople, on n'en peut pas répondre si précisément. Ainsi l'Observation de Pytheas, de la manière que Strabon l'a rapportée, n'est pas suffisante pour réfoudre la question du changement de l'obliquité de l'Ecliptique.

Pytheas ne se contenta pas de faire des Observations
De l'origine et du progrès
dans son Pays : la passion qu'il avait pour l'Astronomie et pour la Géographie, lui fit parcourir l'Europe depuis les Colonnes d'Hercule jusqu'aux bouches du Tanaïs. Il alla fort avant vers le Pole Arctique par l'Océan Occidental, et il observa qu'à mesure qu'il avançait, les jours s'allongeaient au Solstice d'Été, de sorte qu'en un certain climat il n'y avait que trois heures de nuit, et plus loin il n'y en avait plus que deux ; qu'enfin à l'Île de Thulé le Soleil se levait presqu'au coucher qu'il s'étoit couché, le Tropique demeurant entier sur l'horizon de cette Île ; ce qui arrive en Islande et dans les parties Septentrionales de la Norvège, comme les Relations modernes nous l'apprennent. Strabon qui étoit prévenu que ces Climats sont inhabitablest, accuse en cela Pytheas de mensonge, et blâme de crédulité Eratosthène et Hipparque, qui sur le rapport de Pytheas ont dit la même chose de l'Île de Thulé. Mais les Relations des Navigateurs modernes ayant pleinement justifié Pytheas, on peut lui donner la gloire d'avoir été le premier qui s'est avancé vers le Pole jusques dans des Pays que l'on croyoit inhabitables, et qui a distingué les climats par la différente longueur des jours et des nuits.

Environ le temps de Pytheas, les Sçavans de la Grèce ayant pris goût à l'Astronomie, plusieurs grands Hommes d'entre eux s'y appliquèrent à l'envi. Eudoxe, après avoir été quelque temps disciple de Platon, ne fut pas satisfait de ce qui s'en enseignoit dans les Ecoles d'Athènes : il alla en Egypte puiser cette science dans sa source ; et ayant obtenu une Lettre de recommandation d'Agèsias Roy de Lacedémone, à Nectanebo Roy d'Egypte, il demeura seize mois avec les Astronomes de ce Pays-là pour profiter de leurs conférences. A son retour il composa plusieurs Livres d'Astronomie, et entre autres la Description des Constellations qu'Aratus mit en vers quelque temps après par l'ordre du Roy Antigone.

Aristote contemporain d'Euxode, et comme lui disci-
ple de Platon, se servit de l'Astronomie pour perfectionner la Physique & la Géographie. Il détermina par les Obsérvations des Astronomes la figure & la grandeur de la Terre. Il démontra qu'elle est sphérique par la rondeur de son ombre, qui paraît sur le disque de la Lune dans les Éclipses, & par l'inégalité des hauteurs méridiennes qui sont différentes à mesure que l'on s'approche ou que l'on s'éloigne des Poles. Il fit voir par ces mêmes Observations, que la maffe de la Terre est petite en comparaison de celle des Autres; il donna les mesures de sa circonférence, il disposa les Vents dans leur ordre selon les parties du Ciel: & comme il croyoit qu'il y avoit des Pays que l'on ne pouvait habiter, il essaya de distinguer par les ombres les Pays habitables de ceux qu'il s'imaginoit ne l'être pas; & il enseigna que la longueur du Monde habitable, c'est-à-dire des Pays compris entre les Colonnes d'Hercule & les Indes, est à sa largeur, comprise entre l'Ethiopie & les extrémités de la Scythie, à peu-près comme cinq est à trois.

Le Livre intitulé du Monde, qui est adressé à Alexandre, & dont on dit qu'Aristote est l'Auteur, fait voir que l'on avoit dès-lors beaucoup de connoissance de la Géographie. Car on y voit une Description affez exacte des principales parties de la Terre, que l'auteur de ce Livre divise en trois Parties, savoir l'Europe, l'Asie & l'Afrique. Mais les Descriptions exactes qu'Alexandre eut soin de faire faire de ses Conquêtes, donnerent une forme beaucoup plus parfaite à la Géographie. Il voulut que l'on travaillât à ces Descriptions, non-seulement par l'estime du chemin, comme cela s'étoit pratiqué jufqu'alors, mais même par la mesure actuelle & par les Observations des Autres; & il mena Callisthène à la suite pour faire ces Observations. Callisthène ayant eu cette occasion d'aller à Babylone y trouva des Observations Astronomiques que les Babyloniens avoient faites pendant l'espace de
mil neuf cents trois années, il les envoya à Aristote.

Pline nous a conservé les mesures qu'Alexandre fit prendre par Diogène et par Béton, des distances des villes et des rivières de l'Afie, depuis les portes Caspiennes jusqu'à la mer des Indes ; et encore les observations qu'Onésicrite et Nearque firent sur la flotte qu'il leur donna expressément, pour aller reconnaître les côtes de la Mer des Indes et du Golfe Persique. Ils observèrent les distances des lieux non seulement par l'estime du chemin, mais encore par la mesure actuelle des stades, lorsque cela fut possible ; et au défaut de la mesure actuelle, par les observations des Astres : ce qui a fait dire à Polybe que l'on devoit aux conquêtes d'Alexandre ce que l'on savoit des Indes Orientales, et aux conquêtes des Romains la facilité que l'on eut depuis de parvenir à la connaissance du reste du Monde.

Alexandre avoit tant de passion pour les nouvelles découvertes, qu'en trouvant plus d'ennemis à combattre, il exposa sa personne et son armée à de très-grands dangers pour pénétrer jusqu'à l'Océan, sans autre défense que d'aller où personne ne l'eût allé avant lui, et il déclara à toute son armée qu'il se tiendroit heureux de mourir, s'il eût été nécessaire, pour découvrir des pays que la nature semblait avoir voulu cacher.

Après la mort d'Alexandre les princes qui lui succédèrent dans le royaume d'Egypte, prirent tant de soin d'attirer chez eux par leurs libéralités les plus célèbres astronoms, qu'Alexandrie capitale de leur royaume devint bientôt, pour ainsi dire, le siège de l'astronomie. Le fameux Canon y fit quantité d'observations, mais qu'elles ne furent point venues jusqu'à nous. Aristyle et Timocharis y observèrent la déclinaison des étoiles fixes, dont la connaissance est absolument nécessaire pour la géographie et pour la navigation. Eratosthène fit dans la même ville des observations du soleil, qui lui servirent à mesurer la
circonférence de la Terre; & Hipparque qui demeuroit aussi à Alexandrie, non-seulement fit la description de mille vingt-deux Étoiles fixes, & de leur mouvement au-tour des Poles de l’Ecliptique, mais il s’appliqua encore à régler la théorie des mouvements du Soleil & de la Lune.

D’ailleurs les Romains qui aspirent à l’Empire du Monde, prirent soin en divers temps de faire faire des Descriptions des principales parties de la Terre. Dans cette vâe Scipion l’Africain pendant la guerre de Cartha-ge donna à Polybe des Vaisseaux pour aller reconnoître les Côtes d’Afrique, d’Espagne & des Gaules. Cet Histo-rien si fameux par les Livres qu’il a écrits de la Guerre Punique, s’acquitta de cette commissión avec beaucoup d’exactitude; & enfin il fit exprès un voyage par terre pour mesurer les distances de tous les lieux par où Annibal avoit fait passer son Armée en traversant les Pyrénées & les Alpes pour entrer en Italie.

Jules Cézar continua de faire travailler à ces mesures en divers autres endroits de l’empire Romain, & il em-ploya Polycrate, Théodore, & Zénodore à ce grand ouvrage. Il fit lui-même la description des Gaules & des Îles Britanniques dans ses Commentaires, où il a mar-qué non-seulement les limites & les distances des lieux, mais encore leur situation & leur exposition à l’égard du Ciel; & il vérifia par le moyen des Clepsydrès qu’en Esté les nuits sont plus courtes dans les Îles Britanniques que dans les Gaules.

Pompée entretenoit de son côté correspondance avec Ptolémée, Pçaant Astronome & excellent Géographe, qui entreprit de mesurer la circonférence de la Terre par les observations célestes faites en divers lieux sous un même méridien, afin de réduire en degrés les distances que les Romains n’avoient jusqu’alors mesurées que par stades & par milles.

Pour avoir la différence des climats, on observoi
alors en divers lieux la différence des longueurs des ombres, principalement au tems des Solstices & des Equinoxes. On a voir dressé pour cet effet des Gnomons & des Obélisques en diverses parties de la Terre, comme nous apprenons de Pline & de Vitrave, qui ont conservé à la postérité plusieurs de ces observations: mais les plus grands Obélisques étoient en Egypte. Jules César & Auguste en firent transporter quelques-uns à Rome, tant pour y servir d’ornement, que pour y donner des mesures exactes de la proportion des ombres. Auguste fit placer dans le Champ de Mars un des plus grands de ces Obélisques, qui avoit cent onze pieds de hauteur, sans le piedestal. Il y fit faire des fondemens aussi profonds que l’Obélisque étoit haut; & l’Obélisque ayant été élevé sur ces fondemens, il fit tracer au pied une ligne méridienne dont les divisions étoient faites avec des lames de cuivre enclavées dans une aire de pierre, pour montrer l’augmentation des ombres ou leur diminution chaque jour à Midi selon la difference des saisons. Et pour marquer cette difference avec plus de précision, il fit mettre une boule à la pointe de cet Obélisque, qui est encore présentement dans le Champ de Mars à Rome couché dans les terres, où il traverse les caves des maisons bâties sur les ruines. Par la comparaison des ombres de cet Obélisque avec celles que l’on observoit en divers autres endroits de la Terre, on avoit la connoissance des latitudes si nécessaire pour la perfection de la Géographie.

L’Itinéraire que l’on attribué à l’Empereur Antonin, peut passer pour l’abrévég de ce grand Ouvrage. Car cet Itinéraire n’est en effet qu’un recueil des distances qui avoient été mesurées dans toute l’étendue de l’Empire Romain. Sous le regne de ce sage Empereur l’Astronomie commença à prendre une face nouvelle. Car Ptolémée qu’on peut appeler le restaurateur de cette science, pro-

fitant des lumieres de ceux qui l’avoient précédé, & joignant à ses observations particulières celles d’Hipparque, de Timocharis, & des Babyloniens, fit un corps complet de la science des Astres dans un excellent Livre intitulé, La grande Composition, qui comprend la Théo-

rie & les Tables du mouvement du Soleil, de la Lune, des autres Planètes, & des Étoiles fixes. La Géographie ne lui eut pas moins redevable que l’Astronomie : car il fit aussi une description du Globe terrestre, beaucoup plus ample & plus exacte que toutes celles qui avoient été faire	

tes jusqu’alors ; & ayant réduit les distances de tous les lieux de la Terre en degrés & en minutes, suivant la me-

sure qui avoient été déterminée par Posidionius, il disposa ces mêmes lieux dans des Tables Géographiques selon la différence de leur longitude & de leur latitude, de la même manière qu’il avoit disposé après Hipparque les lieux des Étoiles fixes. Il prit pour fondement de la nou-

velle Géographie les Observations Astronomiques faites dans les principales Villes de différentes Provinces de-

puis l’Irlande jusqu’à la Chine, & par ces observations il détermina les latitudes de ces Villes. L’expérience a fait connaitre aussi-bien que la raison, que cette méthode de disposer les Pays selon leurs parallèles & leurs mé-
ridiens par l’observation des Astres, eft la plus exacte & la plus assurée pour la construction des Tables Géogra-

phiques. C’est pourquoi les meilleurs Géographes s’en font fervis pour mettre leurs Cartes dans l’état où elles font à présent. Sans cette méthode les Pilotes n’auroient

Rec. de l’Ac. Tom. VIII.
De l'Origine et du Progrès

jamais réussi dans les longues Navigations, & particulièrement dans celles qu'ils ont entreprises pour découvrir le nouveau Monde. Ainsi l'on peut conclure que c'est à l'Astronomie que l'on est révélateur de la découverte de la moitié du Monde, qui avoit été inconnue jusqu'au siècle passé, & de tous les avantages du Commerce que les Nations les plus éloignées entretiennent maintenant entre elles.

Les grands Ouvrages n'étant jamais parfaits dès leur commencement, il ne faut pas s'étonner que l'on ait trouvé tant de choses à réformer dans la Géographie de Prolémye. S'il n'avait eu des Observations Astronomiques faites avec exactitude en des lieux fort éloignés les uns des autres dans toute l'étendue de la Terre qui étoit connue de son temps, il aurait déterminé leur situation avec plus de justesse qu'il n'a fait. Mais il étoit obligé de s'en rapporter aux relations des Voyageurs, & à l'estime qu'ils avoient faite de leurs distances; & par des connaissances si incertaines il ne pouvait pas déterminer exactement les longitudes ni les latitudes. De là viennent tant de fautes grossières qu'il a faites dans la Géographie. Il a mis toutes les Îles fortunées sous un même Méridien, quoi qu'elles ayent entr'elles une différence de longitude de plusieurs degrés; & il leur a donné dix ou douze degrés de latitude moins qu'elles n'en ont en effet. Il a encore plus mal déterminé la situation des Parties les plus Septentrionales des Îles Britanniques du côté de l'Orient, & des autres Îles voisines. Dans la description de l'Asie il donne à la Ville Capitale de la Chine trois degrés de latitude auflale, bien que les Parties les plus Méridionales de la Chine ayent plus de vingt degrés de latitude Septentrionale. Il fait terminer ce grand Royaume du côté de l'Orient à des Terres inconnues; & néanmoins il est certain que l'Océan lui fera de bornes. Il donne aussi pour limites à l'Afrique des Terres inconnues, peut-être.
parce qu'il n'avait point d'observations des Parties les plus Méridionales de cette troisième Partie du Monde. Enfin la situation qu'il donne à la grande île de Taprobane dans la mer des Indes, est si incertaine que l'on ne croyait qu'il s'agît de c'est l'île de Ceylan, ou celle de Sumatra, ou celle de Bornéo.

Bien qu'il y eût tant de chofes à corriger dans la Géographie de Ptolémée, plusieurs siècles s'écoulerent sans que personne y mît la main ; soit parce qu'il ne se trouva alors personne capable de le faire, ou plutôt parce qu'il ne se trouvait point de Princes qui voulussent faire la dépense des Observations. En effet les Princes Arabes qui conquirent les Pays où l'on faisait une profession particulière de cultiver l'Astronomie & la Géographie, n'eurent pas plutôt déclaré l'intention qu'ils avaient de perfectionner ces sciences, qu'il se trouva incontinent des personnes capables de contribuer à l'exécution de leur dessein. Almamon Caliphe de Babylone ayant alors fait traduire de Grec en Arabe le Livre de Ptolémée de la grande Composition, que les Arabes appelleront Almağe, on fit par ses ordres plusieurs Observations, par les quelles on connut que la déclinaison du Soleil étoit plus petite d'un tiers de degré que Ptolémée n'avait enseigné, & que le mouvement des Étoiles fixes n'étoit pas si lent qu'il l'avait cru. On mesura aussi très-exactement par l'ordre de ce Prince une grande étendue de Pays sous un même Méridien pour déterminer la grandeur d'un degré de la circonférence de la Terre.

Ainsi l'Astronomie & la Géographie se perfectionnoient peu à peu : mais l'art de naviger fit en peu de temps un progrès bien plus considérable par le moyen de la Bouffole. On ne croyait ni qui est l'Auteur de cette invention admirable, ni précisément en quel temps on a commencé de s'en aviser. Ce qu'il y a de certain, c'est que les François se servoient de l'Aïman pour la Navigation.
DE L'ORIGINE ET DU PROGRE'S

long-temps avant tous les autres peuples de l'Europe; comme il est facile de le justifier par les Ouvrages de quelques-uns de nos anciens Auteurs François, qui en ont parlé les premiers il y a plus de quatre cens ans. Il est vrai qu'alors cette invention étoit encore très-imparfaite: car ils disent qu'on ne faisait que mettre l'aiguille dans un vase plein d'eau, où étant soutenu sur un feutre, elle avoit la liberté de se tourner vers le Nort. C'est de cette maniere de Bouffole que les Chinois se servent encore à present, si l'on en croit certaines relations modernes. Les Navigateurs voyant l'importance de cette invention, firent plusieurs Observations Astronomiques vers le commencement du quatorzieme siecle pour s'en assurer, et vérifier qu'en effet une Aiguille aimante mise en equilibre sur un pivot se tourne d'elle-même vers le Pole, & que l'on peut se servir de cette direction de l'Aiguille aimante pour connaitre les régions du Monde, & pour s'yavoir par quel rumb de vent on doit naviger. On reconnut depuis par d'autres observations que l'Aiguille aimante ne marque pas toujours le vrai Nort, mais qu'elle a un peu de declinaison tantôt vers l'Orient, tantôt vers l'Occident, & même que cette declinaison change en divers temps & en divers lieux. Mais on trouva aussi le moyen de connaitre si précisément cette variation, par l'observation du Soleil & des Etoiles, que l'on peut avec sûreté se servir de la Bouffole pour trouver les régions du Ciel, lors même que le temps est couvert, pourvu que peu de temps auparavant elle ait été rectifiee par l'observation des Astres.

Presqu'au même temps que la Bouffole commença d'être en usage, l'exemple des Caliphs excita les Princes de l'Europe à prendre soin de l'avancement de l'Astronomie. L'Empereur Frederic II. ne pouvant souffrir que les Chrétiens eussent moins de connoissance de cette science que les Barbares, fit traduire d'Arabe en Latin l'Almageste.
de Ptolémée, d'où Jean de Sacrobosco professeur en l'Université de Paris, tira l'Ouvrage qu'il fit de la Sphere, sur lequel les plus habiles Mathématiciens de l'Europe ont fait des Commentaires. En Espagne Alphonse Roy de Castille fit une dépenée vraiment royale, pour assem-
bluer de tous côtés ce qu'il y avait de savans Astronomes. Ils travaillèrent par ses ordres à la réformation de l'Astro-
nomie, & firent de nouvelles Tables, qui de son nom fu-
rent appelées Alphonsones. Ils ne réussirent pas la pre-
mière fois dans l'hypothèse du mouvement des Étoiles fixes, qu'ils supposèrent trop lent : mais dans la suite Al-
phonse corrigea leurs Tables, qui ont été depuis augmen-
tées & réduites en une forme plus commode par divers Astronomes. Cet Ouvrage réveilla la curiosité des Sca-
vans de l'Europe : ils inventèrent aussi-tôt diverses sortes d'instruments pour faciliter l'observation des Astres ; ils calculèrent des Éphémérides, & firent des Tables pour trouver en tout temps la déclinaison des Planetes, laquelle étant jointe à l'observation des Hauteurs Méridiennes, sert à trouver les latitudes sur la Terre & sur la Mer, ils travaillèrent aussi à faciliter le calcul des Eclipses, par l'observation desquelles on trouve les longitudes.


Ces découvertes ne furent que les préludes de celle du Nouveau Monde. Christophe Colomb se fondant sur la connoissance qu'il avait de l'Astronomie, & à ce que l'on
dit sur les Mémoires d’un Pilote Basque que la tempête avoir jeté dans une Île de l’Océan Atlantique, entrepris de traverser cette Mer. Il en fit la proposition à divers Princes de l’Europe, dont les uns la négligèrent, parce qu’ils étoient engagés dans des affaires plus pressantes; les autres la rejetèrent, parce qu’ils ne comprirent ni l’importance de cette expédition, ni les raisons que Colomb apportoit pour en faire connoître la possibilité. Ainsi la gloire de la découverte du Nouveau Monde fut laissée aux Rois de Castille qui en ont depuis tiré ces richesses immenses, lesquelles leur ont inspiré le deffin de la Monarchie universelle, & les ont mis en état de disputer quelque temps de puissance & de grandeur avec la France.

Colomb s’avoit bien par la connoissance qu’il avoit de la Sphere & de la Géographie, que navigant toujours vers l’Occident à peu près sous le même parallèle, il ne pouvoit manquer à la fin de trouver des Terres, parce que s’il n’en trouvoit point de nouvelles, il fallloit nécessairement, la Terre étant ronde comme elle est, qu’il arrivât par le plus court chemin à l’extrémité des Indes Orientales. Dans les voyages qu’il avoit faits de Liscbonne à la Guinée allant du Septentrion vers le Midi, il avoit vérifié qu’un degré de la circonférence de la Terre contient cinquante-six milles & deux tiers, conformément à la mesure déterminée par les Astronomes d’Almamon; & il avoit appris dans les Livres de Ptolémée qu’ayant toujours à l’Ouest, il n’y a pas plus de cent quatre-vingt degrés depuis les Canaries jusques aux premières Terres de l’Asie. Il partit donc des Canaries tenant toujours l’avant de son Navire à l’Ouest & sous un même parallèle; & comme il ne fe fioit pas entierement à la Boufsole, il eut soin d’observer toujours le Soleil pendant le jour, & les Étoiles fixes pendant la nuit. Cette précaution l’empêcha de s’égayer; car ceux qui ont écrit sa vie, disent
que les observations du Ciel lui firent appercevoir à la Bouffole une variation qui ne lui étoit pas connue, & qu'elles servirent à le redresser dans son chemin.

Après deux mois de navigation il aborda aux îles Lucayes, & de là il paffa à l'Hispaniola, à Cuba, & à Saint Domingue, d'où il apporta de grandes richesses en Espagne. L'Astronomie qui lui avoit servi à découvrir ces riches Pays, lui aida aussi à s'y établir. Car dans son second voyage sa flotte étant réduite à l'extrémité par la disette de vivres, & les habitans de la Jamaïque ayant refusé de lui en fournir, il eut l'adresse de les menacer d'obscurcir la Lune un jour qu'il savoit qu'une Eclipse devoit arriver: & comme cette Eclipse arriva en effet au jour qu'il avoit prédit, les Barbares épouvantez lui accorderent tout ce qu'il voulut.

Pendant que Colomb découvrit la partie méridionale du nouveau Monde, les Francois en découvrirent la partie Septentrionale, & lui donnèrent le nom de Nouvelle France. Amerin Vespuce continua les découvertes de Colomb, & il eut le bonheur de donner son nom à tout le nouveau Monde que l'on a depuis appelé l'Amérique. Il tira dans ses voyages de grands secours de l'Astronomie, obéissant non-seulement la Latitude des lieux dont il faisoit la découverte, mais encore la difference de Longitude. Il mefuroit la grandeur des jours & des nuits pour reconnoître les climats; il faisoit la description des Étoiles qu'il appercevoit de nouveau vers le Pole Antarctique, & pour conduire son Vaiflèau il choisilloit celles qui étoient les plus proches du Pole.

Les Pilotes du Roy de Portugal qui jufques-là n'avoient fait que parcourir les Côtes Occidentales de l'Afrique, doublerent alors le Cap de Bonne-Espérance, & s'ouvrirent le chemin aux Îles Orientales où ils firent de très-grandes Conquêtes. Ces longs voyages leur donnerent occasion de faire plusieurs belles découvertes au Ciel &
sur la Terre. Entr'autres André Coursal donna la con-
noissance de quantité d'Etoiles qui font autour du Pole
Antarctique, des deux petits nuages qui l'environnent, &
particulièrement de l'Etoile qui sert de Polaire, n'étant
eëloignée du Pole que d'environ onze degrés. Les anciens
Astronomes croyoient qu'il n'y avoit point d'Etoiles au-
tour de ce Pole; & même Clavius a soutenu sur la foy des
anciens Catalogues d'Etoiles, ou de quelques Relations
modernes mais peu exactes, qu'il n'y a point d'Etoiles
plus proches du Pole Antarctique que de 29 ou 30 de-
grés. Cependant il est conçu qu'il y en a un si grand
nombre qui en sont voisines, qu'on les a distribuées en
dix ou onze Constellations.

Ces nouvelles découvertes furent naître une grande
contestation entre les Rois de Portugal & de Castille
touchant le règlement des limites jusqu'où ils pouvoient
étendre leurs Conquêtes. Pour appaiser ce différend on
détermina une certaine ligne qui devroit leur servir de bornes, & qui fut pour cela appelée la ligne de démarcation.
Mais la position de cette ligne n'ayant pas été bien déter-
mindée, la contestation qui aurait pu être affermie si l'on
eut consulté d'habiles Astronomes, recommença peu de
temps après, & elle dure encore.

Les Relations des Pays nouvellement découverts & les
Observations Astronomiques faîtes en ces mêmes lieux,
furent le fondement des nouvelles Descriptions du Mon-
de qui parurent en ce temps-là. Pierre Ápian fut un des
premiers qui publia une Carte générale du Monde ancien
& nouveau. Mais cette Carte étoit fort imparfaite, com-
me le sont ordinairement toutes les choses dans leurs com-
mencemens; car elle représentoit l'Amérique Méridio-
 nale & la Septentrionale comme deux Îles séparées l'une
de l'autre, & elle marquoit un passage ouvert pour aller
de la Mer de Nord en celle de Sud. On eut bientôt re-
connu que l'Amérique Méridionale & la Septentrionale
DE L'ASTRONOMIE.

font jointes ensemble par l'Isthme de Panama : mais pour ce qui est du paßage que plusieurs ont cru être de la Mer de Nord en celle du Sud, on n'a pas jusqu'ici le trouver, quoique l'on ait fait en divers temps plusieurs voyages pour le découvrir. Les Pilotes du Roy François I. côte-royèrent toute la Nouvelle France, sans avoir trouvé de paßage non-seulement au lieu où les Cartes de ce temps-là en marquent un, mais même dans toutes ces Côtes. Les Anglois entreprirent ensuite plusieurs voyages plus avant vers le Pole pour aller chercher la communication de ces deux Mers : mais enfin les glaces les ayant arrêtées, & les ayant tenu enfermées plusieurs mois à la mer, ils perdirent l'espérance de réussir dans leur dessein. Ainsi l'on ne sait pas encore au vrai si la mer Septentrionale a communication avec celle des Indes par le Détroit d'Amérind, ou si l'Asie & l'Europe ne sont qu'un Continent avec les terres que l'on a découvertes auprès du Pole Arctique.

On a eu plus de bonheur du côté du Pole opposé. Car après avoir reconnu que l'Amérique Septentrionale est jointe à la Méridionale par l'Isthme de Panama, les Pilotes ont si bien cherché vers le Midy, qu'ils ont à la fin trouvé un paßage pour entrer dans la mer pacifique, & pour naviguer aux Indes Orientales par l'Ocident. Magellan fut le premier qui réussit dans cette entreprise, ayant découvert le Détroit qui porte son nom. Environ cent ans après, le Maire Pilote Flamand découvrit un autre Détroit, un peu plus éloigné mais beaucoup plus commode, auquel il donna aussi son nom, & Brower après lui trouva encore un autre paßage. Par ces Détroits plusieurs Navigateurs ont depuis fait le tour du monde ; & étant retournés en leur Pays, il s'est trouvé qu'ils comptoient un jour entier moins que ceux qui n'ont été point sortis, comme il doit arriver selon les principes de l'Astronomie, parce qu'un tour de la terre qui est fait suivant le cours du Soleil emporte la diminution d'un jour,
Il est évident que sans le secours de l'Astronomie on n'auroit jamais pu réussir dans ces longues navigations. Car elles demandent des Pilotes veriez dans la connaissance du mouvement des Astres, et exercez dans les Observations Astronomiques. Quand la tempête ou les cou- rants ont emporté un Vaissseau dans un climat inconnu, il ferait impossible aux Pilotes de se reconnoître s'ils n'avoient des Tables des déclinaisons du Soleil & des Etoiles fixes, pour trouver par l'observation des hauteurs des Astres & par ces Tables les latitudes des lieux où ils ont été jettez, & pour connoître en quelque façon les longitudes par l'observation des latitudes jointes à l'estime de la route. Car la déclinaison de l'aiman étant différente selon la différence des temps & des lieux, & montant jus- qu'à 25 & quelquefois jusqu'à 30 degrés, l'usage de la Boussole ferait non-seulement inutile, mais même dangereux, si l'on n'avoit le moyen de le rectifier par l'obser- vation du Ciel. En un mot, quelque secours que l'on ait, il est impossible de se reconnoître en pleine mer après une tempête sans la connaissance des Astres; & au contraire avec la connaissance des Astres on peut absolument se passer de tous les autres secours. Qu'un Pilote ait fait naufrage dans un Pays inconnu; qu'il ait perdu tous les Instrumens dont on se sert pour se conduire en mer, & même la Boussole; il ne perd pas pour cela l'espérance de se remettre en chemin & d'arriver où il souhaite; s'il peut seulement tracer sur quelque planche un quart-de-cercle & le diviser en degrés, pour prendre les hauteurs de quel- que Astre dont il connoît la déclinaison.

Pour revenir au progrès que l'Astronomie & la Géographie ont fait pendant ces derniers siècles; la France a produit plusieurs Hommes illustres qui ont excellé dans ces sciences, parce que de temps en temps elle a eu de grands Princes qui ont pris soin d'exciter par des récom- penses les François à s'y appliquer. Charles V. surnommé
le Sage fit traduire en François quantité de Livres de Mathématique par plusieurs savants personnages. Entre autres Nicolas Orelme qui étoit un des plus savants Mathématiciens de son temps au jugement de Pic de la Mirande, traduisit en notre langue un Traité de la Sphere, & le Livre qu’Aristote a composé du Ciel & du Monde, & il eut, à ce que l’on dit, en considération de ces Traductions, l’Evêché de Liziex. Ce sage Roy fonda aussi deux Chairs de Mathématique dans le College de Maître Gervais à Paris, pour faciliter à ses sujets l’étude de ces sciences. Sous le regne suivant Pierre Dailly Chancelier de l’Université de Paris, qui fut Confesseur du Roy Charles VI. & puis Evêque de Cambray, & enfin Cardinal, fit un des premiers connoître la nécessité de corriger le Calendrier Julien, qui ne s’accordant plus avec le Ciel marquoit alors les Equinoxes neuf jours, & les nouvelles Lunes quatre jours plus tard qu’il ne falloit. Il proposa au Concile de Constance la manière de faire cette correction; & il fit plusieurs Livres d’Astronomie très-docles pour ce temps-là.

Après lui Jacques Fabry, vulgairement appelé Faber, servit beaucoup par ses Ouvrages à entretenir en France la connoissance des Sciences, & particulièrement de l’Astronomie. Cependant il faut avouer qu’au quinzième siècle l’Astronomie ne fit pas beaucoup de progrès. Mais au siècle suivant l’établissement que le Roy François I. fit de deux Lecteurs pour enseigner dans la Ville Capitale de son Royaume les Mathématiques, & les récompenses dont il combla ceux qui s’y appliquoient, excitèrent quantité de beaux esprits à cultiver ces sciences. Alors Oronce Fine, l’un des Lecteurs Royaux nouvellement établis, fit plusieurs Cartes Géographiques, composa divers Traitez de la Sphere & de la théorie des Planetes, & s’appliqua à perfectionner les Instrumens propres pour observer. Guillaume Postel, l’autre des Lecteurs Royaux.
passa pour un prodige non-seulement à cause de la connoissance qu'il avait de toutes les langues du monde, mais encore à cause de sa grande capacité dans les Mathématiques : Il composa un Traité de Cosmographie & quelques autres Ouvrages concernant l'Astronomie. Ces deux Professeurs furent quantité de savans Élèves qui surpassèrent en peu de temps leurs maîtres mêmes. De cette École sortirent Jean Pena & Paschal Duhamel qui furent ensuite Professeurs Roïaux en Mathématique, Elie Vinet & quantité d'autres. Ramus, qui fut aussi Professeur Royal, se signala non-seulement par ses doctes écrits, mais encore par l'établissement d'une Chaire qu'il fonda pour enseigner les Mathématiques indépendamment des hypothèses ordinaires & des opinions communément reçues. Fermat, qui fut depuis premier Médecin du Roy Henry IV. rendit son nom célèbre par la grande connaissance qu'il acquit des Mathématiques. Il en donna des preuves par le Livre qu'il mit au jour sous le titre de Coordonthorie, où il rapporte la mesure qu'il observa d'un degré de la terre avec tant de justesse, qu'il se trouve avoir approché plus près qu'aucun autre de la mesure qui a depuis été observée dans les mêmes lieux par l'Académie Royale des Sciences.

L'Allemagne & les Pays du Nord ont aussi donné plusieurs excellens Astronomes depuis le quinzième siècle. Purbachius, & Regiomontanus son disciple, contribuèrent beaucoup par leurs savans Ouvrages à perfectionner l'Astronomie. Ensuite Copernic mit au jour le Livre admirable qu'il intitula Des Révolutions, où il changea l'hypothèse ordinaire du mouvement du premier mobile pour expliquer les apparences célestes. Il traite aussi du mouvement des Planètes plus exactement que l'on n'avait fait jusqu'alors ; & ce fut sur ces principes que Reinholdus fit les Tables Pruteniques, & Magin celles des seconds mobiles sur lesquelles il composa des Ephemerides. Le Land-
grave de Héffe fit lui-même plusieurs Observations, & il en fit faire par Rotman quantité d'autres, dont une grande partie a été mise au jour par Snellius. De plus il fit un ample Catalogue des Étoiles, réformé sur les Observations, qui a été publié par le P. Curtius. Mais le fameux Tycho-Brahé l'emporta de beaucoup sur tous les Astronomes qui l'avoient précédé. Outre la théorie & les Tables du Soleil & de la Lune, & quantité de belles Observations qu'il a faites, il a composé avec tant d'exactitude un nouveau Catalogue des Étoiles fixes, que ce seul ouvrage peut mériter à son Auteur le nom, que quelques-uns lui ont donné, de Restaurateur de l'Astronomie.

Sur les Observations de Tycho, Magin réforma les Tables du premier & des seconds mobiles, qu'il avoit auparavant composées sur les Observations de Copernic ; Longomontanus fit l'Astronomie & les Tables Danoises ; & Kepler composa son Epitome de l'Astronomie de Copernic, & fit les Tables Rudolphines sur le projet de Tycho. Ensuite Laniberge fit les Tables appelées de son nom ; M. Bouillaud, les Philolaiques ; Wing, les Britanniques ; & Streete, les Carolines. L'invention admirable des Logarithmes, qui fut trouvée par Neper, & perfectionnée par Briggs, par Vlacq & par Cavalleri, facilita beaucoup la construction de ces Tables.

Pendant que Tycho observoit en Dännemarc, plusieurs Astronomes célèbres assemblèrent à Rome sous l'autorité du Pape Grégoire XIII. travaillèrent avec beaucoup de succès à la correction des erreurs qui s'étoient glissées insensiblement dans l'ancien Calendrier par la précession des Équinoxes & par l'anticipation des nouvelles Lunes. Ces erreurs auroient dans la suite entièrement renversé l'ordre établi par les Conciles pour la célébration des Fêtes mobiles, si l'on n'avait réformé le Calendrier suivant les Observations modernes des mouvements du Soleil & de la Lune comparées avec les anciennes. Ce fut Lilius qui
inventa la nouvelle forme de l'année Gregorienne : mais après sa mort Clavius la perfectionna, en donna l'explication, & en fit l'apologie.

Au siècle où nous sommes on a fait une infinité de nouvelles découvertes qui ont mis l'Astronomie en un état incomparablement plus parfait qu'elle n'a été depuis que l'on a commencé de l'enseigner dans l'Europe. Le célèbre Galilée ayant su profiter de l'invention des Lunettes d'approche, a le premier aperçu dans le Ciel des choses qui ont passé long-temps pour incroyables. Il a fait voir distinctement des enfoncements & des éminences dans la surface de la Lune : il a aperçu le croissant de l'Etoile de Venus, l'anneau de Saturne qu'il prênoit pour deux corps placés aux côtez de cette Planète, & les Satellites de Jupiter : il a même remarqué le temps de la révolution de ces Satellites, & il a conclu le premier par le mouvement des taches qu'il avait observées dans le disque du Soleil, que cet Astre tourne sur son axe à peu près dans le temps d'un Mois Lunaire, suivant ses supputations. On doit mettre M. Descartes au rang de ceux qui ont perfectionné l'Astronomie, car le Livre qu'il a composé des principes de la Philosophie, fait voir qu'il n'a pas moins travaillé sur la science du mouvement des Astres, que sur les autres parties de la Physique : mais il s'est plus attaché à raisonner qu'à observer. M. Gassendi s'est appliqué davantage à la pratique de l'Astronomie. Il a publié quantité d'Observations très-importantes, & il a la gloire d'avoir le premier observé la Planète de Mercure dans le disque du Soleil, où elle a été depuis vue par plusieurs autres Astronomes. Il a encore donné au Public une Institution Astronomique, qui a servi de modèle à quantité d'Auteurs pour composer de semblables Livres, parce qu'elle est très-propre pour apprendre les éléments d'Astronomie. Le P. Riccioli a aussi beaucoup contribué à perfectionner non-seulement l'Astronomie,
mais encore la Géographie & la Chronologie, par plu-
sieurs sçavans Ouvrages, où il a renfermé tout ce que
l'on a écrit jusqu'ici de plus excellent sur ces sciences,
& il a inféré une infinité d'Observations qu'il a faites avec
le pere Grimaldi aslez connu d'ailleurs par les décou-
vertes qu'il a faites dans l'Optique.

On feroit trop long si l'on entreprenoit de parler ici
des sçavans Ouvrages de Viéte qui regardent l'Astrono-
mie ; de la methode de trouver les longitudes, inventée
par Morin ; de la théorie des Planetes publiée par Héri-
gone ; de l'application que le P. Pétau a fait de l'Astron-
nomie à la Chronologie ; des Tables Astronomiques de
Duret, du Comte de Pagan, & du P. Grandamy ; des
Institutions Astronomiques de Blancanus & de Taquet,
des Cartes du P. Pardies, & d'une infinité d'autres Ou-
vrages semblables.

Nous n'entreprendrons pas non plus de parler de tant
de sçavans hommes vivans, qui ont illustre l'Astronomie
& la Géographie par leurs doctes Ecrits. Ce sujet est trop
vaste, & demanدرeroit un Livre tout entier. Nous parle-
rons seulement en peu de mots des Ouvrages d'Astrono-
mie que l'Academie a deja donné au Public, & de ceux
qui font deja fort avancez, & qu'elle se propose de faire
imprimer dans peu de temps. Mais avant que d'entrer
dans le detail de ces Ouvrages, il eft a propos de dire ici
quelque chose de l'établissement de l'Academie Royale
des Sciences.

Plusieurs années avant que cette Academie fût établie,
on faisoit à Paris diverses conferences de Physique & de
Mathématique. Dès l'an 1638, le P. Merlenne commença
to faire de ces fortes de conférences, qui furent depuis con-
tinuées par M. de Montmor & par M. Thevenot. Quan-
tité de sçavans hommes prenoient plaisir à venir s'y en-
tretenir des Observations Astronomiques, des Problê-
mes d'Analyse, des experiences de Physique, & des nou-
uelles découvertes dans l'Anatomie, dans la Chimie &
dans la Botanique. On y voyoit souvent assister Messieurs
Gaspéndy, Descartes, Fermat, Defargues, Hobbes, de
Roberval, Bouillaud, Frenicle, Petit, Pecquet, Auzout,
Blondel, Pauchal père & fils, & beaucoup d'autres con-
nus par leurs Ouvrages, qu'il féroit trop long de nom-
mer. Plusieurs étrangers s'y trouvoient aussi, & entr'au-
tres M. Oldembourg, qui ayant depuis passé en Angle-
terre & ayant inspiré aux Anglois le deffein de faire de
semblables conférences, donna occasion à l'établisse-
ment de la Société Royale d'Angleterre. Mais ces Assem-
blées de Physique & de Mathématique qui se tenoient
alors à Paris, n'étoient que des Assemblées de particu-
liers, & non pas des Compagnies établies par l'autorité du
Roy. Ce ne fut qu'en 1666. que Sa Majesté voulant ren-
dre son Regne aussi célèbre par les sciences qu'il est glo-
rieux par les armes, choisit entr'entre ses Sujets ceux qu'il
jugea propres pour former une Académie, & attira des
Pays étrangers quelques-uns de ceux qui s'étoient signa-
le pour les découvertes qu'ils avoient faites & par les
Ouvrages qu'ils avoient donnés au Public. Ainsi la Ma-
jesté établit une Compagnie sous le nom d'Académie
Royale des Sciences, qu'elle composa de Mathématiciens
& de Physiciens, qui eurent ordre de s'appliquer, cha-
cun de son côté, à découvrir ce qui pouvoit être échappé
à la recherche des Anciens dans chaque Partie de la
Physique & des Mathématiques, & même de perfection-
ner ce qui n'avoit été qu'ébauché jusqu'alors.

Ce n'est pas ici le lieu de parler des Ouvrages qui ont
paru sous le nom des particuliers qui compovent cette
Compagnie, ni même de ce que l'Académie a fait sur l'A-
atomie, sur la Chimie, sur la Géométrie, sur l'Ana-
lyse, & sur la Mécanique : on en rendra compte au Pu-
blic en un autre endroit. Pour ne pas sortir des limites
que nous nous sommes prescrites, nous ne parlerons
ici
Le Roy ayant fait bâtir l'Observatoire, dont le dessin, la grandeur & la solidité sont également admirables, l'Académie, pour répondre aux intentions que Sa Majesté avait eus dans la construction de ce superbe édifice, s'appliqua avec beaucoup de soin à tout ce qui pouvait contribuer au progrès de l'Astronomie. On fit de quelle importance il eût pour les Observations Astronomiques d'avoir des horloges justes & bien réglées. Tycho Brahe avait essayé tous les moyens qu'il s'étoit pu imaginer, pour mesurer exactement le temps, soit par les Clepsyndres d'eau, de Mercure, & de diverses autres liques, soit par d'autres manières d'horloges qu'il avait fait faire sur différents principes. Mais après s'être épuisé sur ce sujet, il fut obligé d'en revenir aux horloges ordinaires, quoiqu'il eût sensiblement reconnu leur peu de justesse, lorsqu'il les avait comparées avec le mouvement des Astres. L'Académie ayant résolu de chercher quelque manière plus exacte de mesurer le temps, un des Académiciens qui avait déjà trouvé la manière d'appliquer aux horloges le mouvement du pendule, s'étudia à les régler & à les perfectionner, & les porta enfin à un tel point de perfection & de justesse par le moyen de la cycloïde, que souvent elles ne varient pas même d'une seconde en plusieurs jours; de sorte qu'elles rendent sensibles les inégalités du mouvement des corps célestes, & qu'elles font connaître les différences des ascensions droites entre le Soleil & les Étoiles fixes avec plus d'exactitude & de facilité que l'on ne pouvait faire auparavant par le moyen des observations de la Lune & de Venus, qui sont sujettes à quantité d'erreurs à cause du mouvement propre de ces Planètes. L'utilité de cette invention n'est pas bornée à ce qui regarde seulement l'Astronomie. On pourrait s'en servir dans les voyages de long cours pour trouver la différence des méridiens, si l'on mettoit en pra-

Rec. de l'Ac. Tom. VIII.
tique ce qui a été proposé pour empêcher qu'elles ne sé
sentent de l'agitation du Navire, & si l'on a voit de
porter ensemble plusieurs de ces horloges pour les réta
ner l'une par l'autre dans les tempêtes. On pourrait em
ployer au même usage d'autres horloges inventées aussi
par l'Académie, dans lesquelles le mouvement est réglé
par un ressort droit ou spiral appliqué au balancier ; &
même se servir des nouvelles horloges de Fable à long
tuyau, qui mesurent exactement le temps, & qui sont aussi
de l'invention de la Compagnie.

L'idée de la mesure universelle n'est qu'une suite de l'é
galité du mouvement des pendules. Car si les vibrations
des pendules d'égale longueur étoient égales par tout le
Monde, on aurait une mesure universelle & perpétuelle
ta laquelle toutes les autres mesures qui sont en usage
dans le Monde pourroient être rapportées ; & quand mê
me la différence des climats apporteroit quelque diffé
rence dans la durée des vibrations, des pendules de mê
me longueur, on ne laisseroit pas d'avoir au moins une
mesure certaine & perpétuelle pour chaque lieu.

Il est vrai, comme nous l'avons déjà dit, que l'Astro
nomie ait reçu d'énormes avantages de l'invention
des Lunettes d'approche : mais parce qu'on n'avait point
encore de manière assurée de travailler des verres, on trou
voit fort peu de bonnes Lunettes qui fussent d'une lon
gueur suffisante pour faire de nouvelles découvertes ; &
cette rareté empêchait que l'on ne tirât de l'invention
des grandes Lunettes tout l'avantage qu'on en pouvait
attendre. Et quoique les Français, & même les Étrangers,
excitent par la liberalité du Roi, eussent fait tout ce que
l'on pouvait espérer de leur adroitesse ; ils avaient mieux
réussi à perfectionner qu'à faciliter cette admirable in
vention. Mais enfin on a trouvé dans l'Académie le
moyen de travailler des verres de toutes sortes de gran
deurs avec autant de facilité que de justesse. On en peut
juger par le grand nombre d'excellents verres que l'Académie a envoyés de tous côtés : de sorte que l'on peut dire que la France a part en quelque façon aux Observations Astronomiques que l'on fait dans les Pays étrangers, puisque la plupart des Observateurs, même dans les Pays les plus éloignés, se servent des verres qu'ils ont eu de l'Académie. On voit aujourd'hui par le moyen des Lunettes les diamètres des objets non pas seulement quarante fois comme au temps de Galilée, mais quatre ou cinq cens fois plus grands que lors qu'on les regardait sans Lunettes ; et l'on pourra encore les voir beaucoup plus grands, si l'on observe de la manière qui se pratique présentement à l'Observatoire. Car l'Académie se fera commodément de verres de deux & de trois cens pieds par le moyen d'une tour haute de six vingt pieds que l'on a fait élever exprès pour cet ufage sur la terrasse de l'Observatoire. Ce qui acheve de perfectionner cette manière de se servir des grands verres, c'est que l'on a inventé pour porter le verre une machine composée des cercles de la Sphere, & d'une horloge qui fait mouvoir le verre de même que le meut l'Astre qu'on observe, en forte que le verre demeure toujours directement exposé à l'Astre.

L'invention que l'Académie trouva au commencement de son établissement, d'appliquer des Lunettes au lieu de Pinnules aux Alidades des quarts de cercles & des autres instrumens dont on se sert pour faire des Observations sur la Terre & dans le Ciel, a été d'une très grande utilité dans la fuite ; car on fait à présent les Observations Astronomiques, & l'on prend les Angles des Triangles pour les Cartes Géographiques avec une facilité & une justesse infiniment plus grande qu'il on ne faisait auparavant avec de simples Pinnules. Les nivellemens que l'on a faits avec des niveaux où l'on avait appliqué des Lunettes, sont des preuves certaines de la justesse de cette invention ; car lorsqu'on a nivellé les conduites des
Étangs faits aux environs de Trappes, des sources de la montagne de Roquancourt, & des autres eaux qui ont été ramassées près de Versailles, on a toujours trouvé dans l'exécution les mêmes hauteurs que les nivellements avaient données. Lorsque le Roy ordonna à l'Académie de niveller les Rivieres de Seine, de Loire, de Loin, & d'Étampes, pour sçavoir précisément la hauteur de leurs eaux, tant entr'elles qu'à l'égard de Versailles, les mêmes opérations ayant été réitérées plusieurs fois ne se sont jamais trouvées différentes. Enfin dans les nivellement que l'on a faits avec une tres-grande exactitude pour trouver les hauteurs & les pentes de la Riviere d'Eure, les opérations, quoique faites par différents chemins, en divers temps, & par l'espace de plus de vingt-cinq lieues, ont toujours été conformes, & l'on a trouvé que les eaux de la Riviere d'Eure le pouvoient conduire beau-
coup plus haut que le dessus du Château de Versailles. L'expérience a confirmé les opérations de l'Académie: car sur l'assurance de ces nivellements Sa Majesté ayant résolu de faire cette entreprise, qui est une des plus grâ
des & des plus surprenantes que l'on ait jamais faîtes, à cause des difficultés qu'il faut surmonter en chemin; & ensuite l'eau ayant été conduite l'espace de près de 20000 toises dans une partie que l'on a faite de ce nouveau Can
nal, elle s'est soutenu à la même hauteur, & elle a faci-
lement coulé avec la même pente que l'on avait détermi
née par le nivellement.
L'Académie trouva encore au commencement de son établissement le moyen d'appliquer le micromètre aux Lunettes, & cette invention lui a beaucoup servi en plu
sieurs rencontres. On ne pouvait auparavant qu'avec beaucoup de difficulté & même d'incertitude, mesurer les diamètres des Étoiles fixes & des Planètes, déterminer la quantité des Éclipses du Soleil & de la Lune, ni obse
rver les différents éloignemens d'une même Planète.
DE L'ASTRONOMIE.

mais cette application du micromètre aux Lunettes donne un moyen aussi aisé que certain de faire toutes ces Observations avec beaucoup de précision.

Ainsi la perfection où l'on a porté les grandes Lunettes, l'application qu'on en a faite à divers Instrument, la commodité d'un Observatoire bâti expressément, & l'abondance de toutes les choses nécessaires que Sa Majesté fait fournir aux Observateurs avec une magnificence Royale, ayant facilité les Observations, l'Académie a découvert dans le Ciel plusieurs choses qui n'étoient point encore connus, elle en a vérifié beaucoup d'autres qui étoient douteuses, & elle a corrigé diverses erreurs qui avoient passé jusqu'ici pour des vérités constantes.

Pour établir solidement les principes de l'Astronomie, l'Académie jugea qu'avant toutes choses il falloit s'appliquer à distinguer les fausses apparences d'avec les véritables. Les Anciens avoient supposé que les rayons des Astres viennent en ligne droite jusqu'à notre œil. On s'étoit bien aperçu depuis environ un siècle, que cette supposition ne s'accorde pas avec les Observations; & on avoit reconnu que les rayons se rompent en passant de l'Éther dans l'Air qui environne la Terre, que cette réfraction fait paraître les Astres plus éloignés qu'ils ne sont en effet, & que près de l'horizon elle éleve le Soleil & la Lune plus que de la grandeur de leurs diamètres. Mais les plus célèbres Astronomes modernes s'étoient encore trompés, en ce qu'ayant remarqué que les réfractions deviennent plus petites à mesure que les hauteurs sont plus grandes, ils avoient prétendu que les réfractions des Étoiles fixées deviennent imperceptibles à la hauteur de 30 degrés, & celles du Soleil à la hauteur de 45.

L'Académie a trouvé par quantité d'Observations très-exactes, que les réfractions tant du Soleil que des Étoiles fixées sont encore fortes sensibles à la hauteur de 45 degrés; qu'elles sont les mêmes de jour que de nuit;
qu'elles ne sont point différentes pour le Soleil & pour les Etoiles ; qu'elles ne deviennent imperceptibles qu'au zenith ; qu'il faut par conséquent corrigier toutes les hauteurs apparentes des Aftres, & qu'il faut même diminuer les hauteurs de Pole. Car bien que les Anciens n'ayent jamais fait de différence entre les hauteurs du Pole apparentes & les véritables, néanmoins il est certain que les hauteurs du Pole paroissent dans nos Climats plus grandes de quelques minutes qu'elles ne le sont en effet : d'où il s'ensuit qu'il y a eu jusqu'à présent de l'erreur dans tous les calculs Astronomiques fondez sur la hauteur du Pole, & qu'y ayant peu d'Observations qui ne supposent la hauteur du Pole, il y en a peu qu'il ne faille corriger.

Pour trouver la grandeur des réfractions dans les grandes hauteurs où les réfractions sont peu sensibles, l'Académie s'est appliquée à chercher une hypothèse par laquelle on pût déterminer la hauteur de l'Air qui cause les réfractions des Aftres, la proportion au diamètre de la Terre, & la proportion des réfractions de l'Air à celles de l'Aéther ; & sur cette hypothèse elle a inventé des méthodes géométriques pour conclure de la grandeur des réfractions dans les moindres hauteurs où elles sont très-sensibles, quelle doit être la grandeur des réfractions dans les grandes hauteurs : ce qui a été confirmé par les Observations.

Après s'être assuré de la grandeur des réfractions, on a tâché de bien connaître les parallaxes du Soleil, qui tout au contraire des réfractions le font paroître plus bas qu'il n'est en effet. Il est très-difficile de dire rien de précis sur cette matière, qui est une des plus embarrassées de l'Astronomie. Néanmoins l'Académie ayant trouvé que divers mélanges de réfractions & de parallaxes faisaient le même effet, a conclu en les appliquant aux mêmes hauteurs apparentes, qu'elles doivent être les mêmes hauteurs véritables,
Comme les hauteurs méridiennes du Soleil comparées avec la hauteur du Pôle donnent la déclinaison de cet Astre, & que la connaissance de son mouvement est principalement fondée sur celle de sa déclinaison, on eut un grand avantage pour établir la théorie du Soleil, lors qu'on eut trouvé des moyens certains de réduire les hauteurs apparentes aux véritables. On tâcha premièrement d'établir l'obliquité de l'Ecliptique, parce qu'il faut nécessairement connaître cette obliquité pour trouver le vrai lieu du Soleil dans le Zodiaque chaque jour de l'année, & que de là dépend la construction de toutes les Tables du premier mobile. Les véritables hauteurs méridiennes du Soleil dans les Solfèges d'Hiver & d'Esté ayant été comparées tant entre elles-mêmes qu'avec la véritable hauteur du Pôle, on trouva que l'obliquité de l'Ecliptique étoit plus petite de deux minutes & demie que n'avoient prétendu les plus célèbres Astronomes de ce siècle, qui n'avoient pas distingué les hauteurs apparentes du Soleil & du Pôle d'avec les véritables.

Il n'étoit pas moins important de déterminer l'excentricité du Soleil, touchant laquelle il y a une célèbre contrefaction entre les Astronomes modernes. Quelques-uns soutiennent avec tous les Anciens que l'inégalité apparente du mouvement annuel du Soleil doit être attribuée toute entière à la variation de la distance entre le Soleil & la Terre. Kepler au contraire prétend qu'il n'y a que la moitié de cette inégalité de mouvement qui soit optique, que l'autre moitié est physique, & que par conséquent l'excentricité du Soleil est moindre de la moitié que n'ont supposé les Anciens. Pour décider cette question célèbre, on comparra l'observation de la variation annuelle du diamètre apparent du Soleil, laquelle dépend de la simple excentricité, avec les observations de l'inégalité apparente de son mouvement; & comme la proportion de l'inégalité du mouvement du Soleil se trouvait...
double à celle de la variation apparente de son diamètre ; on inféra que le Soleil n’a en effet que la moitié de l’excentricité que l’on devoit supposer pour attribuer toute l’inégalité de son mouvement à une simple apparence, d’où il s’ensuit que la moitié de cette inégalité n’est qu’apparente, mais que l’autre moitié est véritable. On trouva même que cette moitié véritable est plus petite d’une dix-huitième partie que les Modernes n’avaient supposé ; de sorte que le mouvement du Soleil est un peu moins inégal qu’ils n’avoient cru. Ainsi on trouva que l’Equinoxe du Printemps arrive trois heures plus tard, & l’Equinoxe de l’Automne trois heures plutôt que ne marquent les Tables modernes ; mais que l’un & l’autre Solstice arrive à l’heure marquée par ces mêmes Tables.

De la théorie du Soleil on passa à celle de la Lune, où l’on fit aussi plusieurs nouvelles découvertes.

1. On observa le diamètre de la Lune avec une très-grande exactitude, & l’on s’aperçut évidemment qu’il augmenta toujours quand elle monta de l’horizon vers le zenith, & qu’il diminua quand elle descend du zenith à l’horizon.

2. On trouva que le diamètre de la Lune diminua depuis les conjonctions jusqu’aux quadratures, quand elle est vers le perigée, mais qu’il ne paroit point diminuer lorsqu’elle est vers l’apogée. Il étoit difficile de trouver une théorie qui pût expliquer cette variation. L’Académie en a inventé une qui l’explique par un certain équilibre que la Lune doit garder avec la Terre dans sa révolution annuelle.

3. On a cherché par des méthodes nouvelles la parallaxe de la Lune dans les diverses distances de son apogée & des conjonctions. Comme la Lune en faïlant sa révolution journalière vers l’Occident est plus proche de nous, son mouvement vers l’Occident paroit aussi plus vite lorsqu’elle est plus proche de notre méridien. On s’est servi
DE L'ASTRONOMIE.

servi de cette variation apparente de la vitesse du mouvement de la Lune vers l'Occident, pour déterminer combien elle est distante de la Terre, & l'on a observé cette vitesse à l'égard de celle des Étoiles fixes qui se rencontrent dans le même parallèle, en mesurant à diverses heures la différence de leurs ascensions droites.

4. On a examiné la proportion des diamètres apparents de la Lune avec sa parallaxe horizontale, & en les comparant ensemble on a trouvé que cette proportion est comme 15 à 56. Ainsi l'on a maintenant une méthode pour trouver exactement en tout temps la parallaxe de la Lune par l'observation de son diamètre, & même de réduire le lieu apparent de la Lune au lieu véritable, en observant le diamètre de la Lune au même temps que l'on détermine le lieu apparent. C'est ce qui manquait aux Anciens pour faire cette réduction avec justesse, lorsqu'ils voulaient mettre en usage les observations de la Lune.

5. Rien ne contribua davantage à la perfection de la théorie de la Lune, que l'observation des Éclipses. Mais la difficulté de distinguer dans les Éclipses de Lune l'ombre véritable d'avec la penombre, avoit rendu jusqu'à présent douteuse la pâpart de ces observations. Pour éviter cet inconvénient l'Académie a déterminé avec soin les phases principales par l'immersion & l'émerison des taches de la Lune, & elle a établi par une méthode nouvelle & facile la situation apparente de ces taches dans le disque de la Lune au temps des Éclipses. Elle a aussi trouvé la méthode de suppléer au défaut des observations lorsque les nuages empêchent d'observer le commencement & la fin des Éclipses du Soleil, pourvu qu'on puisse voir le Soleil pendant trois ou quatre minutes de temps seulement.

6. On a fait une description exacte des taches de la Lune, non seulement pour observer les Éclipses avec plus de facilité & de précision, mais encore pour examiner s'il

Rec. de l'Ac. Tom. VIII.
dans la suite du temps il n'arrivera point de changement à quelques unes de ces taches. On a observé des changements très remarquables dans les taches du Soleil ; mais jusqu'ici l'on n'en a point apperçu dans celles de la Lune ; ou si l'on a cru y remarquer quelques petites différences en certains endroits, on a douté si ces différences ne venaient point de la différente manière dont ces taches sont éclairées des rayons du Soleil ; parce qu'il est difficile que la Lune, à cause de sa libration, soit toujours éclairée du Soleil de la même manière dans les mêmes phases.

Pour expliquer cette libration apparente on a trouvé une théorie très simple & très naturelle. Comme les Coperniciens attribuent deux mouvements à la Terre, l'un annuel & l'autre journalier, de même on a considéré dans la Lune deux mouvements différents. Par l'un de ces mouvements dont la révolution s'achève en 27 jours & un tiers, la Lune paraît tourner d'Orient en Occident sur un axe parallèle à celui de son orbite. L'autre mouvement se fait réellement d'Occident en Orient sur un axe dont les Poles sont éloignés de ceux de l'orbite de la Lune transportée dans son globe de sept degrés & demi, & des Poles de l'Ecliptique, de deux degrés & demi ; & il a pour colure ou premier méridien le cercle de la plus grande latitude de la Lune transporté aussi dans son globe. De la complication de ces deux mouvements contraires, dont l'un n'est qu'apparent & l'autre est réel, l'un est inégal & l'autre égal, résulte la libration apparente de la Lune. Car si le premier mouvement qui se communique également à toutes les parties de la Lune n'était mêlé d'aucun autre, le globe de la Lune nous paraîtrait tourner d'Orient en Occident autour d'un axe parallèle à celui de son orbite avec les inégalités qui viennent du mouvement de la Lune par le Zodiaque ; de même que dans l'hypothèse des Coperniciens, si la révolution annuelle de la Terre n'était point compliquée avec sa révo-
lution journalière, le globe de la Terre vu du Soleil pa-
roîtroit tourner sur son axe perpendiculaire au plan de
l'Écliptique: mais comme le mouvement inégal eût mêlé
t à l'autre mouvement égal des taches, qui se fait en un
sens contraire; la Lune paraît avoir deux mouvements
différents, & c'est dans la différence de ces deux mouve-
ments que consiste cette apparence de libration.

Pour ce qui est des cinq autres Planètes, on a exac-
tement observé leurs disques apparents, qui selon leurs diffé-
rentes situations à l'égard du Soleil ont des phases dif-
férentes comme la Lune, mais peu sensibles dans les Pla-
netes superieures. Par ces observations on a reconnu que
echaque Planète fait sa révolution particulière autour
du Soleil, comme Copernic & Ticho l'ont supposé; &
qu'elles ont toutes à l'égard de cet Astre à peu près la mê-
me excentricité que les Anciens leur donnaient à l'égard
de la Terre. L'excentricité du Soleil faisant une inég-
alité apparente dans le mouvement de ces Planètes, &
s'étant trouvée plus petite que les Astronomes moder-
nes ne l'avoient supposée, comme nous l'avons dit ci-de-
fus, la théorie de ces cinq Planètes, & principalement de
celles qui sont plus proches du Soleil, a eu besoin d'une
correction considérable. Pour trouver ces excentricitez
particulières des Planètes, leurs apogées, & les époques
de leur moyen mouvement, on a trouvé une méthode
géométrique de comparer ensemble toutes les observa-
tions que l'on a pu avoir, & l'on a tiré de cette compa-
raison la détermination de toutes ces choses.

Sur ce que l'on ait ci-devant reconnu par plusieurs
observations que la vitesse réelle des Planètes augmente
t à proportion qu'elles approchent du Soleil, & qu'elle di-
minue à mesure qu'elles s'en éloignent; l'on a inventé
une ligne pour servir d'orbite aux Planètes. Cette ligne
est une manière d'ellipse dans laquelle les rectangles faits
par les lignes tirées de la Planète à l'un & à l'autre foyer.
font toujours égaux; au lieu que dans les ellipsoles ordinaire; ce sont les lunes des deux points des foyers qui lacent toujours égales entr'elles. On a aussi corrigé les époques de leurs mouvements & leurs anomalies, principalement celles de Mercure.

Les fréquentes observations que l'on a faites de la Planète de Jupiter, y ont fait découvrir plusieurs taches dont quelques-unes sont claires & les autres obscures. On a trouvé d'abord que les unes & les autres font leurs revolutions autour de Jupiter en 9 heures & 56 minutes, qui est la révolution la plus courte de toutes celles que l'on a jusqu'ici observées dans le Ciel: & on s'est aperçu dans la suite que ces révolutions sont sujettes à quelque peu de variation, & que le mouvement de certaines taches qui ont paru proches de l'Equinoxial de Jupiter, a été un peu plus vite que celui des autres taches qui en étoient plus éloignées. Ces taches tantôt augmentent & tantôt diminuent jusqu'à devenir imperceptibles; & la plus grande & la plus évidente de toutes, après avoir paru durant un ou deux ans, disparaît durant deux ou trois autres; après quoi elle paraît de nouveau au même endroit où elle avait disparu.

Les taches que l'on a observées sur le disque de la Planète de Mars, sont beaucoup plus grandes que celles de Jupiter, mais elles ne paraissent pas si bien terminées; ce qui empêche que l'on ne puisse déterminer leurs périodes avec autant de précision que celles des taches de Jupiter. On a néanmoins observé que les révolutions de ces taches de Mars s'achevaient en 24 heures 40 minutes.

On a aussi aperçu, mais fort rarement, sur la Planète de Venus quelques taches assez bien terminées, dont les périodes étoient de 23 heures. Il y a paru souvent d'autres taches, mais si mal terminées, que l'on n'a pu en observer distinctement les périodes.

Il s'est trouvé que ce que Galilée croyait être deux
corps détaché aux deux côtés de Saturne, n’est qu’un anneau plat entièrement détaché de cette Planète, qui y est enfermé comme un globe artificiel dans son horizon. Cet anneau paraît ordinairement de figure ovale, parce qu’il se présente obliquement à nos yeux, mais il s’élargit & s’étreit à mesure qu’il est plus ou moins incliné à notre rayon visuel dans la révolution qu’il fait autour du Soleil en trente ans ; & demeurant toujours dans le même parallélisme, il disparoit entièrement deux fois en chaque révolution, parce qu’alors il présente son tranchant à notre vû à.

Outre les sept Planetes principales qui ont été connus aux Anciens, les grandes Lunettes ont donné le moyen d’en découvrir en ce siècle neuf autres dont les observations font d’un très-grand usage. Car quoique ces nouvelles Planetes paraissent incomparables plus petites que les autres, néanmoins la vitesse de leur mouvement, & leurs fréquentes Eclipses donnent de grands avantages pour vérifier quantité de choses qu’il feroit impossible de connoître par l’observation des anciennes Planetes ; c’est pourquoi l’Académie a eu une application particulière à observer ces nouveaux Astrès, & principalement les Satellites de Jupiter. On avoit déjà donné au Public des Tables de leur mouvement, mais les erreurs imperceptibles que l’on n’avoit pu y éviter, s’étoient tellement accumulées dans la suite du temps, que ces Tables étoient devenus inutiles, l’Académie a premiérement observé très- régulièremment toutes les Eclipses de ces Satellites autant que le temps l’a permis, & particulièrement celles qui se font dans l’ombre, dont l’immersion & l’émerison sont plus précisément déterminées que celles des conjonctions. En faisant ces observations on découvrit une nouvelle espèce d’Eclipses, qui n’est pas moins admirable que celles dont on avoit déjà connoissance, c’est les Eclipses que ces petites Planetes.
font sur Jupiter en passant entre son disque & celui du Soleil ; on voit alors leurs petites ombres parcourir le disque de Jupiter d'Orient en Occident, & l'on peut déterminer la minute qu'elles parviennent au milieu de ce disque. On s'est servi de ces deux sortes d'Eclipèses dans la correction des Tables.

Pour établir la théorie de ces Satellites, la principale difficulté consistait à trouver les inclinaisons des lignes de leur mouvement à l'orbite de Jupiter, & les lieux de leurs intersecctions, d'où dépend le temps, la durée, & la grandeur des Eclipèses. On les détermina d'abord par la comparaison des premières observations qui furent faites par Galilée avec celles qui sont plus récentes ; mais l'expérience ayant enfin fait connaître que les premières observations n'étoient pas assez exactes, on fut obligé de s'attacher seulement aux dernières. Enfin après avoir fait des Tables qui suffisoient pour se préparer à observer les Eclipèses de ces Satellites en divers lieux de la Terre, on concerta avec plusieurs Astronomes qui habitent en différents endroits de l'Europe, les moyens de se servir de ces Eclipèses pour trouver les longitudes, & ce travail a réussi avec tant de succès, qu'on peut affirmer que ces Eclipèses font le moyen le plus prompt & le plus certain que l'on ait présenterent pour déterminer les longitudes.

Les Observations que l'Académie a faites des Satellites de Jupiter ont donné occasion d'examiner un des plus beaux problèmes de la Physique, qui est de savoir si le mouvement de la lumière est succèufif, ou s'il se fait en un instant. On a comparé le temps de deux émerisons prochaines du premier des Satellites dans une des quadratures de Jupiter avec le temps de deux immersions prochaines du même Satellite dans la quadrature opposée de cette Planète ; & bien que la lumière d'un Satellite à la fin de sa révolution dans la première quadrature fasse moins de chemin pour venir à la terre d'où Jupiter s'approche, qu'à
la fin de la révolution dans la seconde quadrature quand Jupiter s'éloigne de la terre ; & que cette différence monte tout au moins à plus de soixante mille lieues de chemin dans un temps plus que dans l'autre ; néanmoins on n'a point trouvé de différence sensible entre ces deux espaces de temps ; ce qui a donné lieu de croire que les Observations que l'on peut faire sur la surface de la terre, ou même dans tout l'espace compris jusqu'à la Lune, ne suffisent pas pour rien déterminer de certain sur ce problème, & que par conséquent les méthodes que Galilée a proposées pour cet effet dans ses mécaniques sont inutiles. Ce n'est pas que l'Académie ne se soit aperçue dans la suite de ces Observations que le temps d'un nombre considérables d'impressions d'un même Satellite est sensiblement plus court que celui d'un nombre pareil d'émersions, ce qui se peut expliquer par l'hypothèse du mouvement successif de la lumière : mais cela ne lui a pas paru suffisant pour convaincre que le mouvement de la lumière est en effet successif, parce que l'on n'est pas certain que cette inégalité de temps ne soit pas produite ou par l'excentricité du Satellite, ou par l'irrégularité de son mouvement, ou par quelqu'autre cause jusques ici inconnue, dont on pourra s'éclaircir avec le temps.

Parmi les méthodes que l'Académie a trouvées pour la facilité des calculs Astronomiques, elle a pratiqué la manière de déterminer les phases particulières des Éclipses du Soleil par la projection de la surface de la terre faite par les rayons du Soleil qui passent par la surface de l'orbe de la Lune, & par celle de l'Atmosphère qui les détourne par la réfraction, où l'on projette aussi le Soleil de la manière qu'il est vu des lieux particuliers de la terre qui en peuvent voir l'Éclipse dans le passage de la Lune par cette projection. Elle a aussi inventé diverses Machines dont les unes par leur mouvement montrent en quelque temps que ce soit la situation & les différents aspects de toutes les Pla-
hetes entr’elles & à l’égard de la terre, les autres marquent les Eclipses du Soleil & de la Lune & les autres lunaisions.

La fin principale que l’Académie s’est proposée en s’appliquant aux Observations Astronomiques a toujours été de les rapporter à l’avancement de la Géographie & de la Navigation ; & dans ce dessein rien n’est plus utile que de déterminer quelle partie de la circonférence de la terre répond précisément à un degré du Ciel. Pour le faire avec toute la précision possible, on prit pour base une éspace de terre d’environ 34 000 pieds en ligne droite, & on le mesura actuellement par deux fois avec tant d’exactitude qu’il ne fut trouvé pas plus de deux pieds de différence entre les deux mesures. Sur cette base on fit entre Paris & Amiens plusieurs grands triangles, dont on prit les angles avec des Instrumens garnis de Lunettes ; & ayant mesuré par ces triangles un éspace de 68 430 toises sur une ligne droite tirée du Septentrion au Midi, on observa aux deux extrémités de cette ligne les hauteurs méridiennes des Etoiles fixes. Par toutes ces mesures & ces Observations, l’Académie a trouvé que la longueur d’un degré d’un grand cercle est de 57 060 toises à la mesure du Châtelet de Paris.

Quoique l’Instrumen dont on s’est servi pour prendre ces hauteurs méridiennes eut dix pieds de rayon ; néanmoins il faut demeurer d’accord qu’il est difficile de répondre de l’erreur de cinq ou six secondes avec un Instrument de cette grandeur, & comme six secondes répondent à 9 5 toises, on ne pouvait pas être assuré d’avoir la mesure d’un degré à cent toises près. C’est pourquoi l’Académie a continué de prolonger cette ligne méridienne de côté & d’autre jusques aux deux extrémités de la France, c’est-à-dire jusqu’à la longueur de huit degrés, dans laquelle l’erreur ne fera pas plus grande que dans la mesure d’un seul degré, & par conséquent ne fera pas considéra-
ble. On a déjà fait environ la moitié de cette longueur en formant de côté & d'autre de grands triangles comme l'on avait commencé, & l'on travaille à achever le reste.

Après avoir déterminé la grandeur d'un degré de la circonférence de la terre, on entreprit plusieurs voyages pour établir les longitudes, en comparant les Observations que l'on ferait en des lieux fort éloignez avec celles que l'on devait faire en même-temps à l'Observatoire. On commença par le voyage d'Uraniborg en Danemark, où Tycho-Brahé avait fait au siècle dernier quantité d'Observations Astronomiques, que l'on ne pouvait comparer avec celles de Paris sans connaître la différence des méridiens entre Paris & Uraniborg, touchant laquelle les Astronomes modernes ne s'accordaient pas à deux degrés près. Par les Observations de plusieurs Eclipses des Satellites de Jupiter on trouva que la différence de ces deux méridiens est plus petite d'un degré & deux tiers que Longomontanus n'a prétendu; & que la hauteur du Pole d'Uraniborg est d'un tiers de minute plus grande qu'elle n'a été déterminée par Tycho. La situation de la ligne méridienne d'Uraniborg fut trouvée différente d'environ 10 minutes du Nort à l'Ouest de celle qui résulte des positions de Tycho. Mais on jugea que cette différence se doit plutôt attribuer à quelque erreur arrivée dans les Observations de Tycho, qu'à un véritable changement de la ligne méridienne,

Presqu'au même-temps on envoya un autre des Académiciens à l'Isle de Cayenne située environ à cinq degrés de l'Equateur, pour vérifier par les Observations que l'on ferait en ce climat, où suivant la Table de Tycho, il ne doit point y avoir de réfractions dans les hauteurs méridiennes du Soleil, si la parallaxe du Soleil & l'obliquité de l'Ecliptique déterminée par l'Académie s'accordait avec le Ciel.

Les Observations que l'on fit en cette Isle pendant plus...
d'une année confirmèrent ce que l'Académie avait établi touchant les réfractions, et elles donnèrent une connois-
sance précise de l'obliquité de l'Ecliptique. Comme l'on
avait choisi une année que Mars étoit beaucoup plus pro-
che de la terre que le Soleil, on tâcha de déterminer la
parallaxe de cette Planette, et même celle du Soleil en
comparant les hauteurs méridiennes prises à la Cayenne
avec celles que l'on aurait trouvées les mêmes jours à Pa-
ris. On détermina aussi par les Observations des Eclipses
du Soleil, de la Lune, et des Satellites de Jupiter la dif-
férence de longitude entre Paris et la Cayenne; on y ob-
serva les Étoiles fixes qui sont si proches du Pôle Austral
qu'on ne peut les voir dans nos climats, et on fit plusieurs
remarques curieuses sur la variation et la déclinaison de
l'aiguille aimantée, sur les marées, sur les courants, sur la pe-
fanteur de l'air et sur la longueur du Pendule à secondes, qui
fut trouvée sensiblement plus petite proche de l'Equinocial
que dans nos climats. Ce qui est très important pour pren-
dre les précautions nécessaires dans l'usage que l'on peut
faire de la Pendule pour la connoissance des longitudes.
Le Roy ayant été informé de l'utilité qu'on avait tirée
de l'observation des Eclipses des Satellites de Jupiter pour
établir les longitudes, ordonna que l'on fit par cette mé-
thode de nouvelles Cartes de la France. Aussi-tôt l'Aca-
démie envoya faire quantité d'Observations de ces Eclipses
sur toutes les Côtes du Royaume, et par la comparaison de
ces Observations avec celles qui furent faites en même-
temps à Paris, elle trouva que les Géographes modernes, qui
avoient voulu corriger Ptolomée, avaient trop avancé vers
l'Ouest les Côtes Occidentales du Royaume entre Bayonne
et la Garonne, et que ces Côtes furent dressées à peu près sur
la ligne mérid. comme les Cartes anciennes recueillies
par Ortelius les représentaient; d'où il s'ensuit que la situa-
tion de la méridienne est en ce lieu la même qu'au temps
de Ptolomée. Sa Majesté voulut aussi que l'Académie en-
voyâts des Observateurs dans les lieux de sa domination les plus éloignez. On envoya donc en plusieurs endroits de l’Afrique & de l’Amérique, & entre autres à la petite île de Gorée proche le Cap Verd. L’Académie jugea qu’il étoit nécessaire de connaitre précisément la situation de ce Cap, parce que c’est la partie de notre Continent la plus avancée dans l’Océan occidental, & que quelques Géographes y ont établi le premier méridien. Des Observations que l’on a faites dans ces voyages il résulte que les différences véritables des longitudes, qui ont été observées jusqu’à présent, sont plus petites que les Géographes n’ont supposé, que l’Europe, l’Asie & l’Afrique occupent moins de place sur la surface de la terre, que l’Amérique est plus proche de notre Continent, & que par conséquent la Mer Pacifique & le Continent qui est entre la Tartarie & l’Amérique Septentrionale, ont plus d’étendue qu’on ne leur en donno dans les Cartes les plus exactes. Sur ces lumières on a dressé une Carte de toute la Terre connue sur le plancher d’une Tour de l’Observatoire, dans laquelle on s’est éloigné de quelques Cartes plus modernes jusqu’à 20 degrés dans les longitudes des Terres Orientales & les Observations des Éclipses qui ont été faites aux Indes Orientales & à Paris, ont confirmé cette différence, dont il aurait été difficile de s’affirmer sans le recours des observations célestes.

A ce que nous avons dit de l’utilité de l’Astronomie, on peut ajouter les avantages que l’on en a tiré & que l’on entretous les jours pour la propagation de la Foy; car c’est sous l’aveu & sous la protection de cette science, que ceux qui se sont dévoilés pour aller annoncer l’Évangile aux Infideles, penetrèrent dans les Pays les plus éloignez, qu’ils y vivent non-seulement en sécurité, mais même dans une liberté entière de prêcher les vérités de la Foy, qu’ils attirent l’admiration des Peuples, qu’ils s’insinuent dans la familiarité des Grands, & qu’ils gagnent même la faveur
De l'origine et du progrès, &c.

des Souverains. Ainsi cette science a ouvert aux Missionnaires le vaste Empire de la Chine, dont l'entrée était fermée par les Loix du Pays & par des raisons d'Etat à tous les Étrangers, & elle a servi à obtenir la permission d'y bâtir des Églises & d'y faire l'exercice public de la véritable Religion. C'est pourquoi le Roy a voulu que les Missionnaires qui font partis pour aller prêcher l'Évangile à la Chine, au Royaume de Siam, &aux autres Etats des Indes Orientales fussent instruits des manières dont l'Académie fait les Observations Astronomiques, & qu'ils prissent d'Elle des Mémoires très-amples de ce qu'ils avaient à faire, & à remarquer dans leur voyage.

Les Observations que ces Missionnaires ont déjà faites de concert avec l'Académie & qu'ils lui ont envoyées, étant comparées avec celles qui ont été faites en même-temps à l'Observatoire, ont déjà donné de grandes lumières; & on ne peut pas douter que celles que l'on continuera de faire dans ces Pays éloignez, ne contribuent beaucoup au progrès de l'Astronomie; & si les personnes qui s'appliquent à cette science dans les Pays Étrangers entretiennent la correspondance avec l'Académie & lui communiquent leurs Observations, comme elle offre de leur faire part des siennes; il y a lieu d'espérer que l'on portera en peu de temps non-seulement l'Astronomie, mais encore la Géographie & l'art de Naviger à leur plus haute perfection.