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Abstract Either because observed images are blurred by the instrument and trans-
fer medium or because the collected data (e.g. in radio astronomy) are
not in the form of an image, image reconstruction is a key problem in
observational astronomy. Understanding the fundamental problems un-
derlying the deconvolution (noise amplification) and the way to solve
for them (regularization) is the prototype to cope with other kind of
inverse problems.
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1.1 Image formation

1.1.1 Standard image formation equation

For an incoherent source, the observed image y(s) in a direction s is
given by the standard image formation equation:

y(s) =

∫

h(s|s′)x(s′) ds′ + n(s) (1)

where x(s′) is the object brightness distribution, h(s|s′) is the instrumen-
tal point spread function (PSF), and n(s) accounts for the noise (source
and detector). The PSF h(s|s′) is the observed brightness distribution
in the direction s for a point source located in the direction s′.

Figure 1 shows the simulation of a galaxy observed with a PSF which
is typical of an adaptive optics system. The noisy blurred image in Fig. 1
will be used to compare various image reconstruction methods described
in this course.
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Figure 1. Simulation of the image of a galaxy. From top-left to bottom-right:
true object brightness distribution, PSF (instrument + transfer medium), noiseless
blurred image, noisy blurred image. The PSF image was kindly provided by F. and
C. Roddier.

1.1.2 Discrete form of image formation equation

For discretized data (e.g. pixels), Eq. (1) can be written in matrix
form:

y = H · x + n (2)

where H is the response matrix, y, x and n are the data, object bright-
ness distribution and noise vectors. These vectors have the same layout;
for instance, the data vector corresponding to a N×N image writes:

y = [y(1, 1), y(2, 1), . . . , y(N, 1), y(1, 2), . . . , y(N, 2), . . . , y(N,N)]T .

1.1.3 Shift invariant PSF

Within the isoplanatic patch of the instrument and transfer medium,
the PSF can be assumed to be shift invariant:

h(s|s′) = h(s− s′) , (3)

for ‖s− s′‖ small enough. In this case, the image formation equation
involves a convolution product:

y(s) =

∫

h(s− s′)x(s′) ds′ + n(s) (4a)

FT−→ ŷ(u) = ĥ(u) x̂(u) + n̂(u) (4b)
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where the hats denote Fourier transformed distributions and u is the
spatial frequency. The Fourier transform ĥ(u) of the PSF is called the
modulation transfer function (MTF).

In the discrete case, the convolution by the PSF is diagonalized by
using the discrete Fourier transform (DFT):

ŷu = ĥu x̂u + n̂u (5)

where index u means u-th spatial frequency u of the discrete Fourier
transformed array.

1.1.4 Discrete Fourier transform

The 1-D discrete Fourier transform (DFT) of a vector x is defined by:

x̂u =
N−1
∑

k=0

xk e−2 i π u k/N FT←− xk =
1

N

N−1
∑

u=0

x̂u e+2 iπ uk/N

where i ≡
√
−1 and N is the number of elements in x. The N × N

discrete Fourier transform (2-D DFT) of x writes:

x̂u,v =
∑

k,l

xk,l e
−2 iπ (u k+v l)/N FT←− xk,l =

1

N2

∑

u,v

x̂u e+2 iπ (u k+v l)/N

where N is the number of elements along each dimension. Using matrix
notation:

x̂ = F · x FT←− x = F−1 · x̂ =
1

Npixel
FH · x̂

where Npixel is the number of elements in x, and FH is the conjugate
transpose of F given by (1-D case):

Fu,k ≡ exp(−2 iπ u k/N) .

In practice, DFT’s can be efficiently computed by means of fast Fourier
transforms (FFT’s).

1.2 Direct inversion

Considering the diagonalized form (5) of the image formation equa-
tion, a very tempting solution is to perform straightforward direct in-
version in the Fourier space and then Fourier transform back to get the
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deconvolved image. In other words:

x(direct) = FFT−1































FFT





















FFT



















































=

The result is rather disappointing: the deconvolved image is even worse
than the observed one! It is easy to understand what happens if we
consider the Fourier transform of the direct solution:

x̂(direct)
u = ŷu/ĥu = x̂u + n̂u/ĥu (6)

which shows that, in the direct inversion, the perfect (but unknown)

solution x̂u get corrupted by a term n̂u/ĥu due to noise. In this latter

term, division by small values of the MTF ĥu, for instance at high fre-
quencies where the noise dominates the signal (see Fig. 2a), yields very
large distorsions. Such noise amplification produces the high frequency
artifacts displayed by the direct solution.

Instrumental transmission (convolution by the PSF) is always a
smoothing process whereas noise is usually non-negligible at high fre-
quencies, the noise amplification problem therefore always arises in de-
convolution. This is termed as ill-conditioning in inverse problem theory.

1.3 Truncated frequencies

A crude way to eliminate noise amplification is to use a suitable cutoff
frequency ucutoff and to write the solution as:

x̂(cutoff)
u =















ŷu

ĥu

for |u| < ucutoff

0 for |u| ≥ ucutoff

(7)

In our example, taking ucutoff = 80 frequels guarantees that the noise
remains well below the signal level (see Fig. 2a); the resulting image is
shown in Fig. 3a. The improvement in resolution and quality is clear but
the stiff truncature of frequencies is responsible of ripples which can be
seen around bright sources in Fig. 3a. A somewhat smoother effect can
be obtained by using other kind of inverse filters like the Wiener filter
described in the next section.
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Figure 2a. Profiles of the power-
spectra of the true brightness distribu-
tion, the noiseless blurred image, and
the actual data (noisy and blurred im-
age). Clearly the noise dominates after
frequency ' 80 frequels.
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Figure 2b. Profiles of the modula-
tion transfer function (MTF), its in-
verse and Wiener inverse-filter.

Figure 3a. Restored image using a
simple cutoff frequency (ucutoff = 80)
in the deconvolution.

Figure 3b. Image obtained by using
Wiener inverse-filter.
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1.4 Wiener inverse-filter

The Wiener inverse-filter is derived from the following two criteria:

The solution is given by applying a linear filter f to the data and
the Fourier transform of the solution writes:

x̂(Wiener)
u ≡ f̂ (Wiener)

u ŷu . (8)

The expected value of the quadratic error with respect to the true
object brightness distribution must be as small as possible:

f (Wiener) = arg min
f

E
{∥

∥

∥x(Wiener) − x(true)
∥

∥

∥

2}

(9)

where E{x} is the expected value of x. For those not familiar with
this notation,

arg min
f

φ(f)

is the element f which minimizes the value of the expression φ(f).

To summarize, Wiener inverse-filter is the linear filter which insures that
the result is as close as possible, on average and in the least squares sense,
to the true object brightness distribution.

In order to derive the expression of the filter, we write the expected
value ε of the quadratic error:

ε ≡ E
{∥

∥

∥x(Wiener) − x(true)
∥

∥

∥

2}

= E
{

∑

k

(

x
(Wiener)
k − x

(true)
k

)2}

by Parseval’s theorem (in its discrete form):

ε =
1

Npixel
E
{

∑

u

∣

∣

∣x̂(Wiener)
u − x̂(true)

u

∣

∣

∣

2}

=
1

Npixel
E
{

∑

u

∣

∣

∣f̂u ŷu − x̂(true)
u

∣

∣

∣

2}

.

The extremum of ε (actually a minimum) is reached for f such that:

∂ε

∂Re{f̂u}
= 0 and

∂ε

∂Im{f̂u}
= 0, ∀u .

Since the two partial derivatives of ε have real values, the minimum of ε
obeys:

∂ε

∂Re{f̂u}
+ i

∂ε

∂Im{f̂u}
= 0, ∀u

⇐⇒ E
{

ŷ?
u (f̂u ŷu − x̂u)

}

= 0, ∀u

⇐⇒ E
{

(ĥu x̂u + n̂u)? (f̂u (ĥu x̂u + n̂u)− x̂u)
}

= 0, ∀u

⇐⇒ (|ĥu|
2
f̂u − ĥ?

u) E{|x̂u|2}+ f̂u E{|n̂u|2} = 0, ∀u
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where z? denotes the complex conjugate to z. The last expression has
been obtained after some simplifications which apply when the signal and
the noise are uncorrelated and when the noise is centered: E{n̂u} = 0.
The final relation can be solved to obtain the expression of the Wiener
inverse-filter:

f̂ (Wiener)
u =

ĥ?
u

|ĥu|
2
+

E{|n̂u|2}
E{|x̂u|2}

. (10)

Figure 2b and Eq. (10) show that the Wiener inverse-filter is close to the
direct inverse-filter for frequencies of high signal-to-noise ratio (SNR),
but is strongly attenuated where the SNR is poor:

f̂ (Wiener)
u '











1/ĥu for SNRu � 1

0 for SNRu � 1
with SNRu ≡

√

√

√

√

|ĥu|
2
E{|x̂u|2}

E{|n̂u|2}
.

The Wiener filter therefore avoids noise amplification and provides the
best solution according to some quality criterion. We will see that these
features are common to all other methods which correctly solve the de-
convolution inverse problem. The result of applying Wiener inverse-filter
to the simulated image is shown in Fig. 3b.

Wiener inverse-filter however yields, possibly, unphysical solution with
negative values and ripples around sharp features (e.g. bright stars) as
can be seen in Fig. 3b. Another drawback of Wiener inverse-filter is that
spectral densities of noise and signal are usually unknown and must be
guessed from the data. For instance, for white noise and assuming that
the spectral density of object brightness distribution follows a simple
parametric law, e.g. a power law, then:











E{|n̂u|2} = constant

E{|x̂u|2} ∝ ‖u‖−β
=⇒ f̂u =

ĥ?
u

|ĥu|
2
+ α ‖u‖β

, (11)

where ‖u‖ is the length of the u-th spatial frequency. We are left with
the problem of determining the best values for α and β; this can be done
by means of Generalized Cross-Validation (GCV, see related section).

1.5 Maximum likelihood

Maximum likelihood methods are commonly used to estimate parame-
ters from noisy data. Such methods can be applied to image restoration,
possibly with additional constraints (e.g., positivity). Maximum likeli-
hood methods are however not appropriate for solving ill-conditioned
inverse problems as will be shown in this section.
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1.5.1 Unconstrained maximum likelihood

The maximum likelihood (ML) solution is the one which maximizes
the probability of the data y given the model among all possible x:

x(ML) = arg max
x

Pr{y|x} = arg min
x

φML(x) (12a)

where
φML(x) ∝ − log(Pr{y|x}) + constant (12b)

is the likelihood penalty related to the log-likelihood up to an additive
constant (and also up to a multiplicative strictly positive factor).

Unconstrained ML for Gaussian noise. In the case of Gaussian
noise, the log-likelihood reads:

− log(Pr{y|x}) =
1

2
(H · x− y)T ·W · (H · x− y) + constant

where H · x is the model of the data (see Eq. (2)) and the weighting
matrix W is the inverse of the covariance matrix of the data:

W = Cov(y)−1 . (13)

Taking η = 2 and dropping any additive constant, the likelihood penalty
φGauss(x) writes:

φGauss(x) ≡ (H · x− y)T ·W · (H · x− y) . (14)

The minimum of φGauss(x) obeys:

∂φGauss(x)

∂xk

∣

∣

∣

∣

x(ML)
= 0, ∀k .

The gradient of the penalty is:

∇φGauss(x) = 2HT ·W · (H · x− y) , (15)

then x(ML) solves of the so-called normal equations:

HT ·W · (H · x(ML) − y) = 0 (16)

which yields a unique minimum provided that HT ·W ·H be positive
definite (by construction this matrix is positive but may not be definite).
The solution of the normal equations is:

x(ML) = (HT ·W ·H)−1 ·HT ·W · y (17)
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which is the well known solution of a weighted linear least squares prob-
lem1. However we have not yet proven that the ML solution is able
to smooth out the noise. We will see that this is not the case in what
follows.

Unconstrained ML for Gaussian white noise. For Gaussian
stationary noise, the covariance matrix is diagonal and proportional to
the identity matrix:

Cov(y) = diag(σ2) = σ2 I ⇐⇒ W ≡ Cov(y)−1 = σ−2 I .

Then the ML solution reduces to:

x(ML) = (HT ·H)−1 ·HT · y .

Taking the discrete Fourier transform of x(ML) yields:

x̂(ML)
u =

ĥ?
u ŷu

|ĥu|
2 =

ŷu

ĥu

(18)

which is exactly the solution obtained by the direct inversion of the
diagonalized image formation equation. As we have seen before, this
is a bad solution into which the noise is amplified largely beyond any
acceptable level. The reader must not be fooled by the particular case
considered here for sake of simplicity (Gaussian stationary noise and
DFT to approximate Fourier transforms), this disappointing result is
very general: maximum likelihood only is unable to properly solve ill-
conditioned inverse problems.

1.5.2 Constrained maximum likelihood

In the hope that additional constraints such as positivity (which must
hold for the restored brightness distribution) may avoid noise ampli-
fication, we can seek for the constrained maximum likelihood (CML)
solution:

x(CML) = arg min
x

φML(x) subject to xj ≥ 0, ∀j . (19)

Owing to the constraints, no direct solution exists and we must use
iterative methods to obtain the solution. It is possible to use bound con-
strained version of optimization algorithms such as conjugate gradients

1For general linear least squares problems, rather than directly use Eq. (17) to find x
(ML),

it is generally faster to solve the normal equations by Cholesky factorization of H
T · W · H

or to compute the least squares solution from QR or LQ factorizations (see e.g., Press et al.,
1992).
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or limited memory variable metric methods (Schwartz and Polak, 1997;
Thiébaut, 2002) but multiplicative methods have also been derived to
enforce non-negativity and deserve particular mention because they are
widely used: RLA (Richardson, 1972; Lucy, 1974) for Poissonian noise;
and ISRA (Daube-Witherspoon and Muehllehner, 1986) for Gaussian
noise.

General non-linear optimization methods. Since the penalty
may be non-quadratic, a non-linear multi-variable optimization algo-
rithm must be used to minimize the penalty function φML(x). Owing
to the large number of parameters involved in image restoration (but
this is also true for most inverse problems), algorithms requiring a lim-
ited amount of memory must be chosen. Finally, in case non-negativity
is required, the optimization method must be able to deal with bound
constraints for the sought parameters. Non-linear conjugate gradients
(CG) and limited-memory variable metric methods (VMLM or L-BFGS)
meet these requirements and can be modified (using gradient projection
methods) to account for bounds (Schwartz and Polak, 1997; Thiébaut,
2002). Conjugate gradients and variable metric methods only require a
user supplied code to compute the penalty function and its gradient with
respect to the sought parameters. All the images in this course where
restored using VMLM-B algorithm a limited-memory variable metric
method with bound constraints (Thiébaut, 2002).

Richardson-Lucy algorithm. RLA has been obtained indepen-
dently by Richardson (1972) and Lucy (1974) on the basis of probabilis-
tics considerations. Exactly the same algorithm has also been derived
by others authors using the expectation-maximization (EM) procedure (
Dempster et al., 1977). RLA is mostly known by astronomers whereas
EM is mostly used in medical imaging; but, again, they are just differ-
ent names for exactly the same algorithm. RLA yields the constrained
maximum likelihood solution for Poissonian noise:

x(RLA) = arg min
x

φPoisson(x) subject to xj ≥ 0, ∀j (20a)

where:

φPoisson(x) =
∑

j

[

ỹj +

(

log
yj

ỹj
− 1

)]

yj (20b)

and ỹ ≡ H·x is the model of the observed image. Starting with an initial
guess x(0) (for instance a uniform image), RLA improves the solution by
using the recursion:

x
(k+1)
j =

(

HT · q(k)
)

j
x

(k)
j with q

(k)
j = yj/ỹ

(k)
j (21)
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where q(k) is obtained by element-wise division of the data y by the
model ỹ(k) ≡ H · x(k) for the restored image x(k) at k-th iteration. The
following pseudo-code implements RLA given the data y, the PSF h, a
starting solution x(0) and a number of iterations n:

RLA(y, h, x(0), n)

ĥ := FFT(h) (store MTF)
for k = 0, ..., n − 1

ỹ(k) := FFT−1
(

ĥ× FFT(x(k))
)

(k-th model)

x(k+1) := x(k) × FFT−1
(

ĥ? × FFT(y/ỹ(k))
)

(new estimate)

return x(n)

where multiplications × and divisions / are performed element-wise and

ĥ? denotes the complex conjugate of the MTF ĥ. This pseudo-code
shows that each RLA iteration involves 4 FFT’s (plus a single FFT in
the initialization to compute the MTF).

Image Space Reconstruction Algorithm. ISRA (Daube-
Witherspoon and Muehllehner, 1986) is a multiplicative and iterative
method which yields the constrained maximum likelihood in the case of
Gaussian noise. The ISRA solution is obtained using the recursion:

x
(k+1)
j = x

(k)
j

(HT ·W · y)j

(HT ·W ·H · x(k))j
(22)

A straightforward implementation of ISRA is:
ISRA(y, h, W, x(0), n)

ĥ := FFT(h) (store MTF)

r := FFT−1
(

ĥ? × FFT(W · y)
)

(store numerator)

for k = 0, ..., n − 1

ỹ(k) := FFT−1
(

ĥ× FFT(x(k))
)

(k-th model)

s(k) := FFT−1
(

ĥ? × FFT(W · ỹ(k))
)

(k-th denominator)

x(k+1) := x(k) × r/s(k) (new estimate)
return x(n)

which, like RLA, involves 4 FFT’s per iteration. In the case of stationary
noise (W = σ−2 I), ISRA can be improved to use only 2 FFT’s per
iteration:

ISRA(y, h, x(0), n)

ĥ := FFT(h) (compute MTF)

r := FFT−1
(

ĥ? × FFT(y)
)

(store numerator)

for k = 0, ..., n − 1
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s(k) := FFT−1
(

|ĥ|2 × FFT(x(k))
)

(k-th denominator)

x(k+1) := x(k) × r/s(k) (new estimate)
return x(n)

Multiplicative algorithms (ISRA, RLA and EM) are very popular
(mostly RLA in astronomy) because they are very simple to implement
and their very first iterations are very efficient. Otherwise their conver-
gence is much slower than other optimization algorithms such as con-
strained conjugate gradients or variable metric. For instance, the result
shown in Fig. 4c was obtained in 30 minutes of CPU time on a 1 GHz
Pentium III laptop by VMLM-B method, against more than 10 hours
by Richardson-Lucy algorithm.

Multiplicative methods are only useful to find a non-negative solution
and, owing to the multiplication in the recursion, they leave unchanged
any pixel that happens to take zero value2.

At the cost of deriving specialized algorithms, multiplicative methods
can be generalized to other expressions of the penalty to account for
different noise statistics3 (Lantéri et al., 2001) and can even be used to
explicitely account for regularization (Lantéri et al., 2002).

1.5.3 Maximum likelihood summary

Constraints such as positivity may help to improve the sought solution
(at least any un-physical solution is avoided) because it plays the role
of a floating support (thus limiting the effective number of significant
pixels). This kind of constraints are however only effective if there are
enough background pixels and the improvement is mostly located near
the edges of the support. In fact, there may be good reasons to not
use non-negativity: e.g. because there is no significant background, or
because a background bias exists in the raw image and has not been
properly removed.

Figures 4b and 4c show that neither unconstrained nor non-negative
maximum likelihood approaches are able to recover a usable image. De-
convolution by unconstrained/constrained maximum likelihood yields
noise amplification — in other words, the maximum likelihood solution
remains ill-conditioned (i.e. a small change in the data due to noise
can produce arbitrarily large changes in the solution): regularization is
needed.

2This feature is however useful to implement support constraints when the support is known
in advance.
3If the exact statistics of the noise is unknown, assuming stationary Gaussian noise is however
more robust than Poissonian (Lane, 1996).
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When started with a smooth image, iteratives maximum likelihood
algorithms can achieve some level of regularization by early stopping
of the iterations before convergence (see e.g. Lantéri et al., 1999). In
this case, the regularized solution is not the maximum likelihood one
and it also depends on the initial solution and the number of performed
iterations. A better solution is to explicitly account for additional reg-
ularization constraints in the penalty criterion. This is explained in the
next section.

1.6 Maximum a posteriori (MAP)

1.6.1 Bayesian approach

We have seen that the maximum likelihood solution:

x(ML) = arg max
x

Pr{y|x} ,

which maximizes the probability of the data given the model, is unable
to cope with noisy data. Intuitively, what we rather want is to find
the solution which has maximum probability given the data y. Such a
solution is called the maximum a posteriori (MAP) solution and reads:

x(MAP) = arg max
x

Pr{x|y} . (23)

From Baye’s theorem:

Pr{x|y} =
Pr{y|x} Pr{x}

Pr{y} ,

and since the probability of the data y alone does not depend on the
unknowns x, we can write:

x(MAP) = arg max
x

Pr{y|x} Pr{x} .

Taking the log-probabilities:

x(MAP) = arg min
x

[

− log(Pr{y|x}) − log(Pr{x})
]

.

Finally, the maximum a posteriori solves:

x(MAP) = arg min
x

φMAP(x) (24a)

where the a posteriori penalty reads:

φMAP(x) = φML(x) + φprior(x) (24b)
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with:

φML(x) = −η log Pr{y|x} + constant (24c)

φprior(x) = −η log Pr{x}+ constant (24d)

where η > 0. φML(x) is the likelihood penalty and φprior(x) is the so-
called a priori penalty. These terms are detailed in what follows. Nev-
ertheless, we can already see that the only difference with the maximum
likelihood approach, is that the MAP solution must minimize an addi-
tional term φprior(x) which will be used to account for regularization.

1.6.2 MAP: the likelihood penalty term

We have seen that minimizing the likelihood penalty φML(x) enforces
agreement with the data. Exact expression of φML(x) should depends on
the known statistics of the noise. However, if the statistics of the noise
is not known, using a least-squares penalty is more robust (Lane, 1996).
In the following, and for sake of simplicity, we will assume Gaussian
stationnary noise:

φML(x) = (H · x− y)T ·W · (H · x− y)

=
1

σ2

∑

k

((H · x)k − yk)
2 (25a)

=
1

Npixel σ2

∑

u

|ĥu x̂u − ŷu|
2
. (25b)

where the latter expression has been obtained by (discrete) Parseval’s
theorem.

1.6.3 MAP: the a priori penalty term

The a priori penalty φprior(x) ∝ − log Pr{x} allows us to account for
additional constraints not carried out by the data alone (i.e. by the like-
lihood term). For instance, the prior can enforce agreement with some
preferred (e.g. smoothness) and/or exact (e.g. non-negativity) properties
of the solution. At least, the prior penalty is responsible of regularizing
the inverse problem. This implies that the prior must provide informa-
tion where the data alone fail to do so (in particular in regions where
the noise dominates the signal or where data are missing). Not all prior
constraints have such properties and the enforced a priori must be cho-
sen with care. Taking into account additional a priori constraints has
also some drawbacks: it must be realized that the solution will be biased
toward the prior.
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1.6.4 Needs of a tunable a priori

Usually the functional form of the a priori penalty φprior(x) is chosen
from qualitative (non-deterministic) arguments, for instance:

“Since we know that noise mostly contaminates the higher
frequencies, we should favor the smoothest solution among all
the solutions in agreement with the data.”

Being qualitative, the relative strength of the a priori with respect to
the likelihood must therefore be adjustable. This can be achieved thanks
to an hyperparameter µ:

φMAP(x) = φµ(x) ≡ φML(x) + µφprior(x) . (26)

Alternatively µ can be seen as a Lagrange multiplier introduced to solve
the constrained problem: minimize φprior(x) subject to φML(x) be equal
to some value (see Gull’s method below). Also note that there can be
more than one hyperparameter. For instance, α and β in our parame-
terized Wiener filter in Eq. (11) can be seen as such hyperparameters.

1.6.5 Smoothness prior

Because the noise usually contaminates the high frequencies, smooth-
ness is a very common regularization constraint. Smoothness can be
enforced if φprior(x) is some measure of the roughness of the sought dis-
tribution x, for instance (in 1-D):

φroughness(x) =
∑

j

[xj+1 − xj]
2. (27)

The roughness can also be measured from the Fourier transform x̂ of the
distribution x:

φprior(x) =
∑

u

wu |x̂u|2

with spectral weights wu ≥ 0 and being a non-decreasing function of the
spatial frequency, e.g.:

wu = |u|β with β ≥ 0 .

The regularized solution is easy to obtain in the case of Gaussian white
noise if we choose a smoothness prior measured in the Fourier space. In
this case, the MAP penalty writes:

φµ(x) = φGauss(x) + µφprior(x)

= (H · x− y)T ·W · (H · x− y) + µ
∑

u

wu |x̂u|2



16

(c) constrained maximum likelihood (Lucy−Richardson)(b) observed image (blurred and noisy)(a) true brightness distribution

(d) Wiener (e) unconstrained MAP (f) constrained MAP with L1−L2 norm

(i) constrained MAP (over−regularized)(h) constrained MAP(g) constrained MAP (under−regularized)

Figure 4. Comparison of deconvolution results by various methods and regular-
ization levels. From top-left to bottom-right: (a) true object, (b) observed im-
age, (c) non-negative maximum likelihood (ML) solution, (d) solution by Wiener
inverse-filter, (e) unconstrained maximum a posteriori (MAP) solution with quadratic
smoothness, (f) non-negative MAP solution with `1 − `2 norm, (g) under-regularized
non-negative MAP solution with quadratic smoothness, (h) non-negative MAP so-
lution with quadratic smoothness, (i) over-regularized non-negative MAP solution
with quadratic smoothness. The regularization level µGCV has been obtained from
generalized cross-validation (GCV).
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=
1

σ2

∑

j

((H · x)j − yj)
2 + µ

∑

u

wu |x̂u|2

=
1

Npixel σ2

∑

u

|ĥu x̂u − ŷu|
2
+ µ

∑

u

wu |x̂u|2

of which the complex gradient is:

∂φµ(x)

∂Re(x̂u)
+ i

∂φµ(x)

∂Im(x̂u)
=

2

Npixel σ2
ĥ?

u (ĥu x̂u − ŷu) + 2µwu x̂u .

The root of this expression is the MAP solution:

x̂[µ]
u ≡

ĥ?
u ŷu

|ĥu|
2
+ µNpixel σ2 wu

(28)

Taking µNpixel σ
2 wu = E{|n̂u|2}/E{|x̂u|2} or wu = ‖u‖β and α =

µNpixel σ
2, this solution is identical to the one given by Wiener inverse-

filter in Eq. (11). This shows that Wiener approach is a particular case
in MAP framework.

1.6.6 Other kind of regularization terms

There exist many different kind of regularization which enforce differ-
ent constraints or similar constraints but in a different way.

For instance, the smoothness regularization in Eq. (27) is quadratic
with respect to the sought parameters and is a particular case of
Tikhonov regularization:

φTikhonov(x) = (D · x)T · (D · x)

where D is either the identity matrix or some differential operator.
Quadratic regularization may also be used in the case of a Gaussian
prior or to find a solution satisfying some known correlation matrix (
Tarantola and Valette, 1982):

φGP(x) = (x− p)T ·C−1
x · (x− p)

where Cx is the assumed correlation matrix (when p = 0) or covariance
matrix with respect to the prior p which is also the default solution
when there are no data.

The well-known maximum entropy method (MEM) can be imple-
mented thanks to a non-quadratic regularization term which is the so-
called negentropy:

φMEM(x) =
∑

j

[

pj − xj + xj log

(

xj

pj

)]
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where p is some prior distribution.
Non-quadratic `1 − `2 norms applied to the spatial gradient may be

used to enforce a smoothness constraints but avoid ripples around point-
like sources or sharp edges. In effect, the `1− `2 norm will prevent small
differences of intensity between neighbor pixels but put less constraints
for large differences. The effectiveness of using such a norm to measure
the roughness of the sought image is shown in Fig. 4f which no longer
exhibits ripples around the bright stars.

1.7 Choosing the hyperparameter(s)

In order to finally solve our inverse problem, we have to choose an
adequate level of regularization. This section presents a few methods to
select the value of µ. Titterington et al. (1985) have made a comparison
of the results obtained from different methods for choosing the value of
the hyperparameters.

1.7.1 Gull’s approach

For Gaussian noise, the MAP solution is given by minimizing:

φµ(x) = χ2(x) + µφprior(x)

where: χ2 ≡ [m(x)− y]T ·W · [m(x) − y] ,

where m(x) is the model. For a perfect model, the expected value of
χ2 is equal to the number of measurements: E{χ2} = Ndata. If the
regularization level is too small, the MAP model will tend to overfit the
data resulting in a value of χ2 smaller than its expected value. On the
contrary, if the regularization level is too high, the MAP model will be
too biased by the a priori and χ2 will be larger than its expected value.
These considerations suggest to choose the weight µ of the regularization
such that:

χ2(x[µ]) = E{χ2} = Ndata

where x[µ] is the MAP solution obtained for a given µ. In practice,
this choice tends to oversmooth the solution. In fact, the model being
derived from the data, it is always biased toward the data and, even for
a correct level of regularization, the expected value of χ2 must be less
than Ndata. For a parametric model with M free parameters adjusted
so as to minimize χ2, the correct formula is:

E{χ2} = Ndata −M ,

the difference Ndata −M is the so-called number of degrees of freedom.
This formula cannot be directly applied to our case because the parame-
ters of our model are correlated by the regularization and M � Nparam.
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Gull (1989), considering that the prior penalty is used to control the
effective number of free parameters, stated that M ' µφprior(x). Fol-
lowing Gull’s approach, the hyperparameter µ and the MAP solution
are obtained by:

x(Gull) = arg min
x

φµ(x) subject to: φµ(x) = Ndata (29)

with φµ(x) = χ2(x) + µφprior(x) and also possibly subject to xj ≥
0,∀j. This method is rarely used because it requires to have a very good
estimation of the absolute noise level.

1.7.2 Cross-validation

Cross-Validation methods make use of the fact that it is possible to
estimate missing measurements when the solution of an inverse problem
is obtained.

Ordinary cross-validation. Let:

x[µ,k] = arg minφµ(x|y[k]) where y[k] ≡ {yj : j 6= k} (30)

be the regularized solution obtained from the incomplete data set where
the k-th measurement is missing; then:

ỹ[µ,k] ≡ (H · x[µ,k])k (31)

is the predicted value of the missing data yk. The cross-validation
penalty is the weighted sum of the quadratic difference between the
predicted value and the real measurement:

CV(µ) ≡
∑

k

(ỹ[µ,k] − yk)
2

σ2
k

(32)

where σ2
k is the variance of the k-th measurement (noise is assumed

to be uncorrelated). For a given value of the hyperparameter, CV(µ)
measures the statistical ability of the inversion to predict the value of
missing data. A good choice for the hyperparameter is the one that
minimizes CV(µ) since it would achieve the best prediction capability.
CV(µ) can be re-written into a more workable expression:

CV(µ) =
∑

k

(ỹ
[µ]
k − yk)

2

σ2
k (1− a

[µ]
k,k)

2
(33)

where:
ỹ[µ] = H · x[µ] (34)
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is the model for a given µ and a[µ] is the so-called influence matrix :

a
[µ]
k,l =

∂ỹ
[µ]
k

∂yl
. (35)

Generalized cross-validation. To overcome some problems with
ordinary cross-validation, Golub et al. (1979) have proposed the gener-
alized cross-validation (GCV) which is a weighted version of CV:

GCV(µ) =
∑

k

w
[µ]
k

(ỹ[µ,k] − yk)
2

σ2
k

=

∑

k(ỹ
[µ]
k − yk)

2/σ2
k

[

1− 1
Npixel

∑

k a
[µ]
k,k

]2 . (36)

(G)CV in the case of deconvolution. In our case, i.e. gaussian
white noise and smoothness prior, the MAP solution is:

x̂[µ]
u ≡

ĥ?
u ŷu

|ĥu|
2
+ µ ru

with ru = Npixel σ
2 wu.

the Fourier transform of the corresponding model is:

ˆ̃y
[µ]
u ≡ ĥu x̂[µ]

u =
|ĥu|

2
ŷu

|ĥu|
2
+ µ ru

= q[µ]
u ŷu with q[µ]

u =
|ĥu|

2

|ĥu|
2
+ µ ru

and all the diagonal terms of the influence matrix are identical :

a
[µ]
k,k =

∂ỹ
[µ]
k

∂yk
=

1

Npixel

∑

u

q[µ]
u .

In our case, i.e. gaussian white noise and smoothness prior, CV and
GCV have the same expression:

CV(µ) = GCV(µ) =

∑

u

(

1− q
[µ]
u

)2
|ŷu|2

[

1− 1
Npixel

∑

u q
[µ]
u

]2

which can be evaluated for different values of µ in order to find its
minimum.

1.8 Myopic and blind deconvolution

So far, we considered image deconvolution assuming that the PSF
was perfectly known. In practice, this is rarely the case. For instance,
when the PSF is measured by a calibration procedure, it is corrupted
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by some level of noise. Moreover, if the observing conditions change,
the calibrated PSF can mismatch the actual PSF. It may even be the
case that the PSF cannot be properly calibrated at all, because it is
varying too rapidly, or because there is no time or no means to do such
a calibration. What can we do to cope with that?

In this case, since the unknown are the object brightness distribution
x and the actual PSF h, the MAP problem has to be restated as:

{x,h}(MAP) = arg max
{x,h}

Pr{x,h|y} (37)

where the data are y = {yobj,yPSF}, yobj being the observed image of
the object and yPSF being the calibration data. Expanding the previous
equation:

{x,h}(MAP) = arg max
{x,h}

Pr{x,h|y}

= arg max
{x,h}

Pr{y|x,h} Pr{x,h}
Pr{y}

= arg max
{x,h}

Pr{y|x,h} Pr{x} Pr{h}
Pr{y}

= arg max
{x,h}

Pr{y|x,h} Pr{x} Pr{h}

= arg min
{x,h}

(− log Pr{y|x,h} − log Pr{x} − log Pr{h})

we find that the sought PSF and object brightness distribution are a
minimum of:

φmyopic(x,h) = φML(y|x,h) + µobj φobj(x) + µPSF φPSF(h) (38)

where φML(y|x,h) ∝ − log Pr{y|x,h} is the likelihood penalty and
where φobj(x) ∝ − log Pr{x} and φpsf(h) ∝ − log Pr{h} are regulariza-
tion terms enforcing the a priori constraints for the sought distributions.

Assuming Gaussian noise and if the calibration data is given by an
image of a point-like source, the MAP criterion writes:

φmyopic(x,h) = (h� x− yobj)
T ·Wobj · (h� x− yobj)

+(h− yPSF)T ·WPSF · (h− yPSF)

+µobj φobj(x) + µPSF φPSF(h) (39)

where � denotes convolution and where Wobj and WPSF are the weight-
ing matrices for the object and PSF images respectively.

Solving such a myopic deconvolution problem is much more difficult
because its solution is highly non-linear with respect to the data. In
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effect, whatever are the expressions of the regularization terms, the cri-
terion to minimize is no longer quadratic with respect to the parameters
(due to the first likelihood term). Nevertheless, a much more impor-
tant point to care of is that unless enough constraints are set by the
regularization terms, the problem may not have a unique solution.

A possible algorithm for finding the solution of the myopic problem
is to proceed by successive regularized deconvolutions. At every stage,
a new estimate of the object is obtained by a first regularized deconvo-
lution given the data, the constraints and an estimate of the PSF, then
another regularized deconvolution is used to obtain a new estimate of
the PSF given the constraints, the data and the previous estimate of the
object brightness distribution:

x(k+1) = arg min
x

[

(h(k) � x− yobj)
T ·Wobj · (h(k) � x− yobj)

+ µobj φobj(x)
]

h(k+1) = arg min
h

[

(h� x(k+1) − yobj)
T ·Wobj · (h� x(k+1) − yobj)

+ (h− yPSF)T ·WPSF · (h− yPSF)

+ µPSF φPSF(h)
]

where x(k) and h(k) are the sought distributions at k-th iteration. Such
an iterative algorithm does reduce the global criterion φMAP(x,h) but
the final solution depends on the initial guess x(0) or h(0) unless the
regularization terms warrant unicity.

Myopic deconvolution has enough flexibility to account for different
cases depending on the signal-to-noise ratio of the measurements:

In the limit WPSF → +∞, the PSF is perfectly characterized by
the calibration data (i.e. h ← yPSF) and myopic deconvolution
becomes identical to conventional deconvolution.

In the limit WPSF → 0 or if no calibration data are available,
myopic deconvolution becomes identical to blind deconvolution
which involves to find the PSF and the brightness distribution of
the object from only an image of the object.

Stated like this, conventional and blind deconvolution appear to be just
two extreme cases of the more general myopic deconvolution problem.
We however have seen that conventional deconvolution is easier to per-
form than myopic deconvolution and we can anticipate that blind de-
convolution must be far more difficult.
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Figure 5. Example of blind deconvolution in action. Left: true object brightness
and PSF. Middle: simulation of corresponding observed image. Right: the two com-
ponents found by blind deconvolution. Source: Thiébaut, 2002.

Nevertheless a number of blind deconvolution algorithms have been
devised which are able to notably improve the quality of real (i.e. noisy)
astronomical images (e.g. Ayers and Dainty, 1988; Lane, 1992; Thiébaut
and Conan, 1995). For instance and following the MAP approach, blind
deconvolution involves the minimization of the join criterion (Thiébaut
and Conan, 1995; Thiébaut, 2002):

φblind(x,h) = (h� x− yobj)
T ·Wobj · (h� x− yobj)

+µobj φobj(x) + µPSF φPSF(h) . (40)

Figure 5 shows an example of blind deconvolution by the resulting algo-
rithm applied to simulated data. Of course the interest of blind decon-
volution is not restricted to astronomy and it can be applied to other
cases for which the instrumental response cannot be properly calibrated
for instance in medical imaging (see Fig. 6a and Fig. 6b).

1.9 Concluding remarks

We have seen how to properly solve for the inverse problem of im-
age deconvolution. But all the problems and solutions discussed in this
course are not specific to image restoration and apply for other problems.
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Figure 6a. Microscopic image of
chromosomes (courtesy Jean-Claude
Bernengo from the Centre Commun
de Quantimétrie, Université Claude
Bernard, Lyon, France).
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Figure 6b. Microscopic image of
chromosomes improved by blind de-
convolution.

Inverse problems are very common in experimental and observational
sciences. Typically, they are encountered when a large number of pa-
rameters (as many as or more than measurements) are to be retrieved
from measured data assuming a model of the data – also called the direct
model. Such problems are ill-conditioned in the sense that a simple in-
version of the direct model applied directly to the data yields a solution
which exhibits significant, or even dominant, features which are com-
pletely different for a small change of the input data (for instance due to
a different realization of the noise). Since the objective constraints set
by the data alone are not sufficient to provide a unique and satisfactorily
solution, additional subjective constraints must be taken into account.
Enforcing such a priori constraints in order to make the inverse problem
well-conditioned is termed regularization.

In addition to the mathematical requirement that regularization is
effectively able to supplement the lack of information carried by the data
alone, it is important that the regularization constraints be physically
relevant because the regularized solution will be biased toward the a
priori. For instance, the smoothness constraints is efficient for avoiding
noise amplification in deconvolution but it will give a solution which is
systematically smoother than the observed object. For that reason, in
the case of stellar field images, maximum entropy regularization may be
preferred to smoothness constraints. However, the important point is
more what type of constraints is set by the regularization rather than
how exactly this is implemented. There are many different ways to
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measure the roughness (first or second derivatives, ...) but they shall
give solutions which differ only for details.

The level of regularization must be tuned with care: too high and the
result will be excessively biased toward the a priori which means that
not all the informational contents of data is extracted; too low and the
solution will be corrupted by artifacts due to the amplification of the
noise. A number of methods have been devised to objectively find the
good level of regularization. Among others, generalized cross validation
(GCV) chooses the level of regularization for which the solution of the
inverse problem has the best capability to predict missing measurements.

Generally, solving inverse problems can be stated as constrained op-
timization of some criterion, the so-called penalty function. There is
therefore a strong link between inverse problems and non-linear con-
strained optimization methods.

Acknowledgments

All the results shown in this chapter were processed with
Yorick which is a free data processing software available for
Unix, MacOS/X and MS-Windows. The yorick home site is
ftp://ftp-icf.llnl.gov/pub/Yorick.

The book “Inverse Problem Theory” (Tarantola, 1987) is a
very good introduction to the subject (the first part of the
book, “Discrete Inverse Problem”, is freely downloadable at:
http://www.ipgp.jussieu.fr/~tarant).

References

Ayers, G. R. and Dainty, J. C. (1988). Iterative blind deconvolution and its applica-
tions. Opt. Lett., 13(7):547–549.

Daube-Witherspoon, M. E. and Muehllehner, G. (1986). An iterative image space
reconstruction algorithm suitable for volume ect. IEEE Trans. Med. Imaging,
5(2):61–66.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the em algorithm. J. R. Stat. Soc. B, 39:1–37.

Golub, Gene H., Heath, Michael, and Wahba, Grace (1979). Generalized cross-
validation as a method for choosing a good ridge parameter. Technometrics,
21:215–223.

Gull, S. F. (1989). Maximum Entropy and Bayesian Methods, chapter Developments
in maximum entropy data analysis, pages 53–72. Kluwer Academic.

Lane, R. G. (1992). Blind deconvolution of speckle images. J. Opt. Soc. Am. A,
9(9):1508–1514.

Lane, R. G. (1996). Methods for maximum-likelihood deconvolution. J. Opt. Soc. Am.

A, 13(10):1992–1998.



26

Lantéri, H., Soummer, R., and Aime, C. (1999). Comparison between ISRA and RLA
algorithms. Use of a Wiener Filter based stopping criterion. A&AS, 140:235–246.

Lantéri, H., Roche, M., and Aime, C. (2002). Penalized maximum likelihood image
restoration with positivity constraints: multiplicative algorithms. Inverse Prob-

lems, 18:1397–1419.

Lantéri, H., Roche, M., Cuevas, O., and Aime, C. (2001). A general method to de-
vise maximum-likelihood signal restoration multiplicative algorithms with non-
negativity constraints. Signal Processing, 81:945–974.

Lucy, L. B. (1974). An iterative technique for the rectification of observed distribu-
tions. ApJ, 79(6):745–754.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Nu-

merical Recipes in C. Cambridge University Press, 2nd edition.

Richardson, W. H. (1972). Bayesian-based iterative method of image restauration. J.

Opt. Soc. Am., 62(1):55–59.

Schwartz, A. and Polak, E. (1997). Family of projected descent methods for optimiza-
tion problems with simple bounds. Journal of Optimization Theory and Applica-

tions, 92(1):1–31.

Tarantola, A. (1987). Inverse Problem Theory. Elsevier.

Tarantola, A. and Valette, B. (1982). Generalized nolinear inverse problems solved us-
ing the least squares criterion. Reviews of Geophysics and Space Physics, 20(2):219–
232.
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