News from

the Atlas^{3D} project

Eric Emsellem

and the ALAS team

From DM inhomogeneities to z=0 galaxies

Mergers Interactions, harassment... Secular evolution, bars, ...

Disk instabilities and clumps Cold accretion (at high z) Star formation, feedback

Cooling and shocks 2D/3D Turbulence Small scales physics

Mare Nostrum = Teyssier et al.

The paradigm

- ♦ E + S0s ~ 40% of (SDSS) mass Bernardi et al. 2010
- E/S0s are overall red, S0s can have young stars
- ♦ Mergers → important to build E's
- Two flavours of E's ? Davies/Nieto/Kormendy/Bender/Lauer...
 - Boxy with flat cores or light deficit, anisotropic, oblate
 - Disky with cusps or light excess, isotropic, triaxial

The Team

Pls: Michele Cappellari, Eric Emsellem, Davor Krajnović, Richard McDermid

Cols :

Katey Alatalo, Leo Blitz, Maxime Bois, Frederic Bournaud, Martin Bureau, Alison Crocker, Roger Davies, Tim Davis, Tim de Zeeuw, Pierre-Alain Duc, Sadegh Khochfar, Harald Kuntschner, Pierre-Yves Lablanche, Raffaella Morganti, Thorsten Naab,Tom Oosterloo, Marc Sarzi, Nicholas Scott, Paolo Serra, Lisa Young, Anne-Marie Weijmans

Associates: Estelle Bayet, Jean-Charles Cuillandre, Jesus Falcon-Barroso, Gijs Verdoes-Kleijn, Marie Martig, Leo Michel-Dansac, Kristina Nyland, Krysten Shapiro, Remco van der Bosch, Glenn van de Ven

Atlas^{3D}: the sample

$$\begin{array}{l} M_{K} < -21.5, \ D < 42 \ Mpc \\ |\delta - 29| < 35^{\circ}, \ |b| > 15^{\circ} \end{array}$$

Parent sample: 871 nearby galaxies

"No spiral structure" (SDSS/DSS2/INT)
260 galaxies

- 2D-spectroscopy (SAURON-WHT)
- Single-dish + interferometric CO (IRAM 30m, CARMA PdB)
- * HI survey (WRST, excl. Virgo)
- Multi-band and Deep Photometry (INT, 2MASS, SDSS, MegaCam)
- eVLA, X-ray, Spitzer, ...
- Stellar populations & Dynamical modelling (JAM)
- Suite of high-resolution numerical simulations of mergers
- High resolution simulations of gas in ETGs
- Simulations in a cosmological context
- Semi Analytic Modeling (SAM)

Atlas^{3D} Project : First results

- I. Cappellari, Emsellem, Krajnović, McDermid et al. 2011 (Sample)
- II. Krajnović, Emsellem, Cappellari et al. 2011 (Kinematic properties)
- III. Emsellem, Cappellari, Krajnović et al. 2011 (Angular momentum)
- IV. Young, Bureau, Davis et al. 2011 (CO Singe dish)
- V. Davis, Bureau, Young et al. 2011 (CO Tully–Fisher relation)
- VI. Bois, Emsellem, Bournaud et al. 2011 (Binary disk mergers)
- VII. Cappellari, Emsellem, Krajnović, McDermid et al. 2011 (Environment)
- VIII. Khochfar, Emsellem, Serra, et al. 2011 (SAM)
- IX. Duc, Cuillandre, Serra, et al. 2011 (Deep Imaging)
- X. Davis, Alatalo, Sarzi, et al. 2011 (Origin of ionised/molecular gas)
- XI. Crocker, Kripps, Bureau et al. 2011 (Dense molecular gas)
- XII. Lablanche, Cappellari, Emsellem et al. 2011 (M/L recovery)
- xIII. Serra, Oosterloo, Morganti et al., 2011 (HI content)
- + Bois, Bournaud, Emsellem et al. 2010 (Numerical resolution)
- + Alatalo, Blitz, Young et al. 2011 (Large-scale AGN outflow in NGC1266)

Molecular Gas

CO (1-0)/(2-1) + CARMA: detection rate of 23 %

- **Same** in clusters or outside, or from -21.5 < M_K < -26
- No CO in slowly rotating galaxies

MISALIGNMENT Angle

Early-type galaxies have surprising amounts of H₂ and HI

Young, Bureau, Davis et al., 2011 (P4) Davis, Bureau, Young et al., 2011 (P10) Alatalo et al., 2011, in prep.

Morphological Quenching (Martig et al. 2009)

Gas in ETGs at very high resolution (~ 5pc)

Bournaud et al. 2011, in prep_1 kpc

Gas in an Isolated Galaxy

- What is already there:
 - Spatial resolution: ok (convergence at ~2-5 pc)
 - Gas phases (cooling, etc), star formation, feedback, mass loss: various recipes exist
- What we need now :
 - e EVOLUTION on a long time-scale (few Gyr) to study
 - Oynamical evolution and link with Star formation
 - e Role from individual processes:
 - e.g., cluster potential, stripping, cold accretion

$$\lambda_{R} \equiv \frac{\left\langle R \cdot \left| V \right| \right\rangle}{\left\langle R \sqrt{V^{2} + \sigma^{2}} \right\rangle}$$

TLAS

Fast Rotators → Family of oblate rotators

Trend with Mass

What about E's and SO's ?

Lyon 2011

- Fastest ETGs are as spirals (λ_R)
- ♦ Most binary mergers → Fast Rotators
- Slow rotators have KDCs, but are TOO flat

Generic Simulations

Label	Softening Length	Particles / component	Total particles
standard	180 pc	10^{5}	6×10^5
high	80 pc	10^{6}	6×10^6
very high	32 pc	6×10^6	3.6×10^7

Bois et al. 2010

Slow rotators

→ requires 50-100 pc

Cosmological context : first approach Martig+Bois et al., in prep

• A first look at the evolution of basic quantities (ϵ , λ_R)

From binary mergers to cosmological context

- Compromise between resolution and realistic context
 - Cannot handle both at the same time
 - → We need to choose what we wish to study
- What we need now :
 - ~ 50pc cosmological studies with main physics
 - Studies of dedicated samples (e.g., environment, mass)
 - e Stellar populations !
 - Intermediate environments: groups (Maxime Bois)
 - Output Stand The GC population

Spectral Colouring of Simulations Bois+Martig et al., in prep

 \clubsuit Correlation between metal enrichment and depth of Φ

Lyon 2011

From binary mergers to cosmological context

- Can fit spectra (and colours) well
 - Constraint on stellar M/L
 - e But "a posteriori" treatment
- What we need now :
 - Output Description of the second s
 - Non solar abundances
 - Tools to better constrain the SFH

Intermediate mass ETGs

Morphology-Density relation

Only 1/3 of systems classified as E's are SR ~4% of the parent sample are Slow Rotators

- Slow rotators : efficient formation only at high densities
- Monotonic trends from low to high densities
- Excludes cluster processes for the onset of fast rotators
- Processes at the small-groups scale in low density environments

Lyon 2011

Probing Growth processes via SAM

Growing in size and mass: SF versus Assembly

- Slow rotators
 - Accrete more material (50-90%), more major mergers (~3), KDCs
 - Very few at z> 2: progenitors should have been fast
 - Complete shut-down of gas cooling
- e Fast rotators:

e 2/3 have large B/T, 1/3 have low B/T (e.g., stripped in clusters)

Probing galaxy formation/evolution with SAM

- Global picture is ok
 - Need to check predictions at high redshift (Olivier's talk)
 - Can we observe the progenitors without any bias?
- What we need now :
 - e How to classify galaxies properly at high z ?
 - → there is hope!
 - e Get good predictions from SAM for colours, sizes
 - e Link with metal enrichment, gradients

Cappellari, Emsellem, Krajnović et al., 2011 (P7)

E/S0 separation should be abandoned:

e results based on this separation → consider with scepticism

Continuity from spirals to fastest rotators ≥ 86% of ETGs are disk-like → Only 4% (9% in mass) of local galaxies are "ellipticals"

* Environment & local (groups) effects are important

- e Slow rotators in cores of clusters/groups
- Mass dependent growth process: SF vs Assembly

Perspectives

- Compromise between spatial/mass resolution
 Implement the main physics ingredients
 - Things should improve continuously
 - but need to be able to handle the data then -> specific questions
 - e Need to understand the role of each process properly
 - Timescales : a few Gyr at least
 - Stellar populations including non-solar abundances
 - IMF, stellar enrichment, etc

PyMGE A Python tool for ICs of isolated galaxies

Hypothesis: oblate - axisymmetric

- e All components described by (local) 6D Gaussians
 - Can include Gas, Dark Matter and Stars
 - Any geometry for the dispersion tensor
- ♦ (non-optimised) code → 20' for ~5 Million particles
- Largest IC so far: 300 Million particles (Milky Way like)

Lvon 2011

 Thin disc, Thick disk, bulge, spheroid, dark matter halo, gas disc (Besançon Model) → 1.5 day on 5 CPUs

