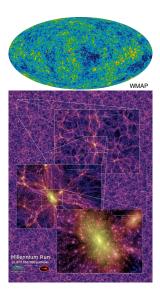
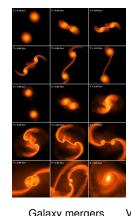
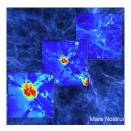
3D spectroscopic surveys: Spatially resolved properties of high-z galaxies

Benoît Epinat


Institut de Recherche en Astrophysique et Planétologie

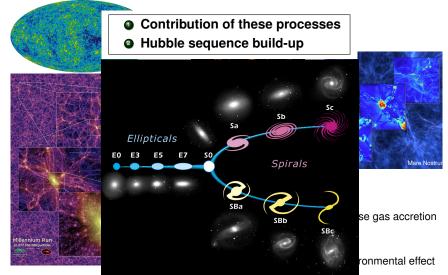


October 18th 2011


Context

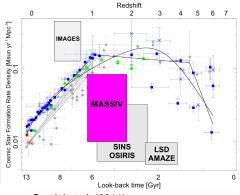
Galaxy formation and evolution processes

Physics of baryons


Galaxy mergers	VS	Diffuse gas accretion
	&	
Secular evolution	VS	Environmental effect
	< • • •	

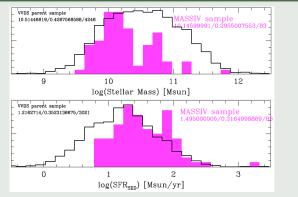
October 18th 2011 2/22

Context


Galaxy formation and evolution processes

Physics of baryons

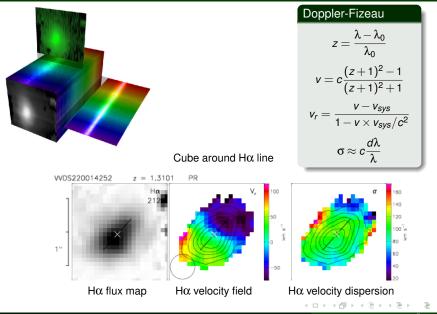
Samples at 0.5 < z < 3


- Peak of cosmic star formation activity
- Morphological transition
- Only emission lines can be studied due to current instrument sensitivity
- Surface brightness dimming : $\propto (1+z)^4$
- Various observational setups
- Various selection functions

Contini et al. (2011) - adapted from Hopkins (2006)

Samples vs parent samples : representativeness

MASSIV (0.9 < z < 1.8), built from VVDS, a complete sample down to I_{AB} \sim 24.5


Contini et al. (2011)

イロト イロト イヨト イ

- Not massive galaxies
- Representative of star-forming galaxies

Samples

From 3D-spectroscopy observations to kinematic maps

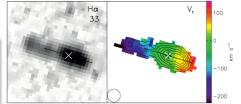
Samples

Resolution vs. sensitivity

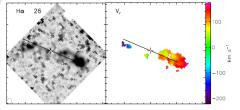
0.7 < z < 4: small variation of the physical scale ($\sim 8.5 \text{ kpc/"}$)

Seeing limited vs. AO

- Seeing limited : \sim 0.6 1.0"
- AO : ~ 0.1 0.4"


Higher sampling with AO \Longrightarrow Lower sensitivity (extended sources)

Current solution : lensed surveys


- Spatial magnification
- Flux magnification
- \implies Can target smaller and fainter sources + use AO

BUT difficulties to build statistical samples (*Stark et al., 2008; Jones et al., 2010*)

Seeing limited : resolution \sim 6 kpc

AO : resolution \sim 2 kpc

ヘロト 人間 ト 人目 ト

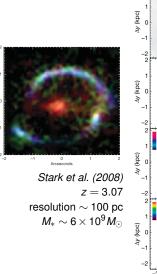
Contini et al. (2011) z = 1.27 $M_* \sim 5.5 \times 10^{10} M_{\odot}$

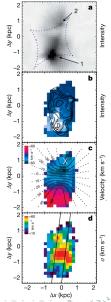
Samples

Resolution vs. sensitivity

0.7 < z < 4: small variation of the physical scale (~ 8.5 kpc/")

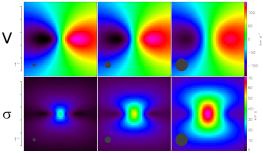
Seeing limited vs. AO


- Seeing limited : $\sim 0.6 1.0$ "
- AO : $\sim 0.1 0.4$ "


Higher sampling with AO \implies Lower sensitivity (extended sources)

Current solution : lensed surveys

- Spatial magnification
- Flux magnification
- \Longrightarrow Can target smaller and fainter sources + use AO


BUT difficulties to build statistical samples (*Stark et al., 2008; Jones et al., 2010*)

Galaxy variety

Effect of beam smearing on kinematical maps

Epinat et al. (2010)

Simulation of a rotating disk

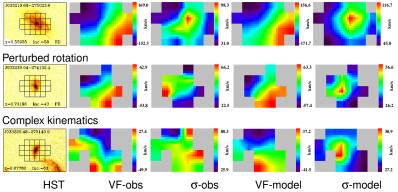
- Seeing increasing from 0.125" to 0.5"
- Null local velocity dispersion

Results

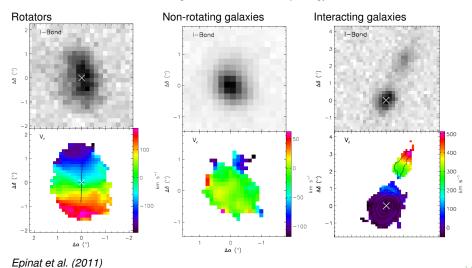
- Velocity gradient decreases
- Velocity dispersion has a peak

Rotating disk modeling

- Gas in rotation in a plane : $V_{los} = V_{sys} + V_{\theta} \cos \theta \sin i$
- Modeling allows to recover the parameters (e.g. Epinat et al. 2010; Davies et al. 2011)


Galaxy variety

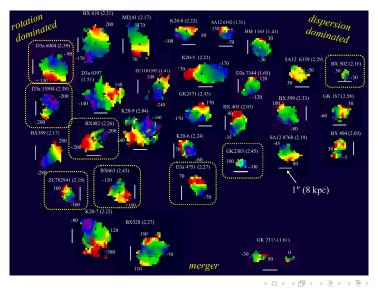
Kinematics classifications


Goals

- Which galaxies are regular rotating disks (gas expected in a plane)
- Merger rate
- Rate of galaxies with other kinematics (irregular, non rotating galaxies, dispersion dominated disks, etc.)

Based on the position of the velocity dispersion peak (*Flores et al., 2006, Yang et al., 2008*) Rotating Disk

I D > I A


Based on agreement between morphology and kinematics

Benoît Epinat

Galaxy variety

SINS classification

Based on a kinemetry analysis (Shapiro et al., 2008)

Classification results and interpretations

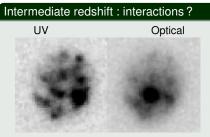
• $z \sim 0.6$ (IMAGES) : anomalous kinematics in at least 41% of the galaxy population \Rightarrow rapid evolution of kinematics most probably induced by merging

- $z \sim 1.3$ (MASSIV) : at least 30% of interacting galaxies (mainly minor mergers)
 - + at least 35% of dispersion dominated objects or with no rotation
 - + some stable disks similar to low-z disks
 - \Rightarrow Still several processes in action at z > 1 in contrast with $z \sim 0.6$
- <u>z ~ 2</u> :

 ${\sf SINS}$: Evidence for cold gas accretion due to 1/3 of dispersion dominated disks

+ Significant fraction of mergers (\sim 1/3)

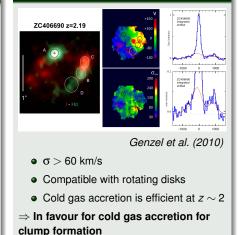
OSIRIS (Law et al., 2009) : non rotating objects support cold gas accretion


Coherent scenario can be built but a consensus is not reached on the interpretation of the kinematics.

One clear evidence : high redshift galaxies have higher local velocity dispersion on average

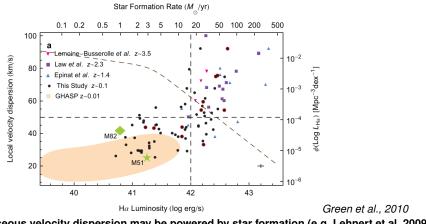
イロト イポト イヨト イヨト

Galaxy variety


Clumpy galaxies : which processes are responsible?

Puech (2010)

- $\sigma \sim$ 30 km/s
- Half compatible with major mergers
- Cold gas accretion not efficient at z ~ 0.6 (Kereš et al., 2009)
- $\Rightarrow \mbox{In favour for interactions as the main} \\ \mbox{driver of clump formation}$

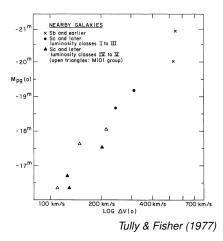

$z \sim$ 2 : cold gas accretion ?

< □ > < 同 > < 三 >

High velocity dispersions at high-z

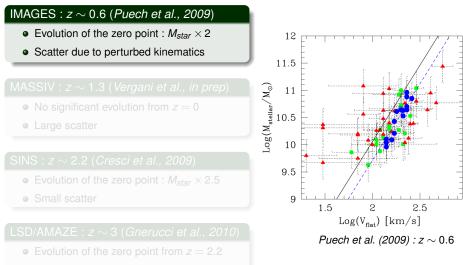
- Local galaxies are not in the same star formation regime than high-z galaxies
- Green et al. (2010), Gonçalves et al. (2010) found local counterparts with both high σ and SFRs

Gaseous velocity dispersion may be powered by star formation (e.g. Lehnert et al. 2009)


Evolution of the Tully-Fisher relation

Original TF relation in the local Universe

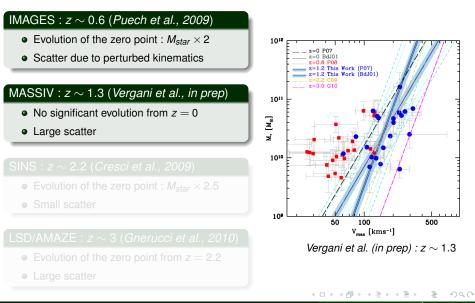
- Link between magnitude and rotational velocity
- Distance estimator (*Tully & Fisher, 1977*)


TF at high-z

- Difficulty : magnitude has to be in rest-frame to be compared
 ⇒ use SEDs to derive stellar masses
- If gas content is constrained : baryonic TF relation

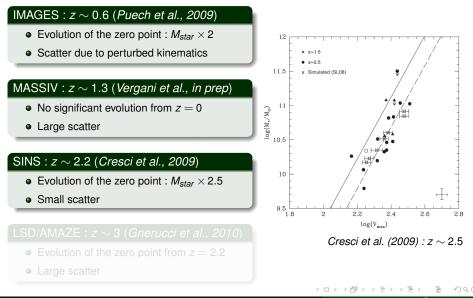
The Tully-Fisher relation

Stellar mass Tully-Fisher relation evolution at high redshift



Large scatter

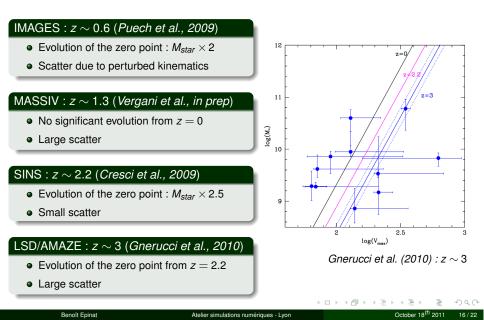
Benoît Epinat


< □ > < 同 > < 三 >

Stellar mass Tully-Fisher relation evolution at high redshift

The Tully-Fisher relation

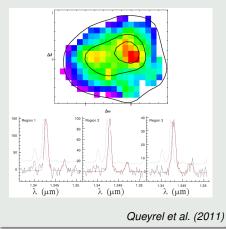
Stellar mass Tully-Fisher relation evolution at high redshift


Benoît Epinat

Atelier simulations numériques - Lyon

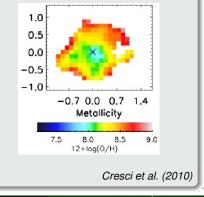
October 18th 2011 16 / 22

The Tully-Fisher relation


Stellar mass Tully-Fisher relation evolution at high redshift

Abundance estimators

MASSIV


 $\begin{array}{l} \mbox{Calibration by P \acute{e}rez-Montero \& Contini (2009):} \\ 12 + \log \frac{O}{H} = 9.07 + 0.79 \times \log \frac{[N_{\rm H}]}{H\alpha} \end{array}$

LSD/AMAZE

Three diagnostics (from SINFONI data) :

- [OIII] λ 5007/H β
- [Οιιι]λ5007/[Οιι]λ3727
- [Neιιι]λ3870/[Oιι]λ3727

MASSIV

Study of abundance gradients in 29 galaxies at $z \sim 1.3$:

- Positive abundance gradients in half the sample
- 7 unambiguous positive gradients : majority of interacting galaxies

Interpretation : Fresh gas accreted in the center due to interaction tidal tails

Queyrel et al. (2011)

LSD/AMAZE

Discovery of positive abundance gradients in 3 rotationally supported galaxies at $z \sim 3$ Interpretation : Cold flows along cosmic filaments toward the center

< D > < A

Cresci et al. (2010)

Different mass assembly mechanisms

- $z \sim 0.6$: merging main driver (IMAGES)
 - Kinematics analysis + Clumpy galaxies + Baryonic Tully-Fisher relation (gas content is already there)
- z > 2 : cold gas accretion substantial driver (SINS, LSD/AMAZE, OSIRIS)
 - Existence of dispersion-dominated disks + Positive abundance gradients in disks + Clumpy galaxies

Transition around $z \sim 1 - 2$ (MASSIV, OSIRIS)

- Positive abundance gradients in merging systems + High fraction of interacting galaxies
- Stable disks in place
- But also dispersion dominated disks : cold gas accretion ?

4 D b 4 B b 4 B b

Need for numerical simulations

- Signatures of mergers, gas rich disks, spheroids, etc.
- How can we explain non-rotating galaxies?
- Origin of high gaseous velocity dispersion
- Impact of strong star formation
- Explain evolution of scaling relations (e.g. Tully-Fisher) + scatter around these relations
- Can inverse metallicity gradient be explained by merging? Cold flows?

Need to convert simulations into "pseudo-observed" datacubes : same methodological biases.

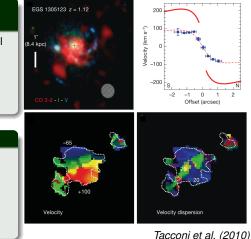
4 D b 4 B b 4 B b

Perspectives

Neutral and molecular gas observations of high-z galaxies

Need to constrain molecular and neutral gas content in high-z galaxies : existence of gas reservoirs ? continuous gas accretion ?

Molecular gas content + kinematics


First observations : Plateau de Bures Interferometer

- CO observations of 3 ULIRGs : Bothwell et al. (2010)
- CO observations of 4 + 19 $z \sim$ 1.2 & $z \sim$ 2.5 galaxies : Taconni et al. (2008, 2010)

The future

- ALMA
- E-VLA
- SKA + precursors (ASKAP, MEERKAT)

 \Longrightarrow Improved sensitivity, resolution and field

O > <
 O >

Atelier simulations numériques - Lyon

Perspectives

New generation of optical and infrared 3D spectrometers

Need for better sensitivity and statistics

New instrumentation

Large IFU in optical : MUSE/VLT

Multi-IFU in IR : KMOS/VLT

HARMONI/E-ELT

Future projects

- Explore new redshift ranges
- Effect of environment
- Target specific populations (most massive galaxies, less massive galaxies, AGN hosts, etc.)