Deep multi-color surveys to trace the stellar mass assembly

Olivier Ilbert

OBSERVATOIRE ASTRONOMIQUE DE MARSEILLE PROVENCI

why deep multi-color surveys ?

- provide sources to be targeted in spectroscopy
- physical parameters
 - luminosity/spectral type/stellar mass
- galaxy structural parameters (morphology, lensing)
- photometric redshifts or color-color selection to isolate a redshift range

Photometric redshifts for all faint sources

Accurate photometric redshifts

 \bullet a good λ sampling around the Balmer/Lyman breaks \bullet deep data

Test of the photo-z methods

PHoto-z Accuracy Testing blind test of 18 codes with GOODS data

> template fitting works better in deep surveys

Hildebrandt et al. 2010

Template fitting with medium bands

The COSMOS multi-color data

x6 Subaru

30 bands over 2 deg² 540,000 sources at i'<25.5

The CDFS multi-color data

18 medium bands From Subaru > 32 bands 40,000 sources over 0.25 deg²

Cardamone et al. 2010

NEWFIRM survey

4 medium bands in NIR over 0.25 deg²

Van Dokkum et al. 2010

1-2% accurate at z<1.3

Ilbert, Capak, Salvato et al. 09

Cardamone et al. 2010

Importance of the medium bands

With medium bands

o_{dz/(1+z)} < 1% at i'<22.5

Importance of the medium bands

Without medium bands

σ_{dz/(1+z)} ~ 3% at i'<22.5

accuracy at z>1.3

Balmer break redshifted in NIR > need a good λ coverage in NIR > need deep NIR

Near-infrared surveys

WIRCAM, WFCAM done in the last 5 years, almost done

VISTA, WFC3 on-going, next 5 years

In 10 years

Near-infrared surveys

Near-infrared surveys

environment at z~0.2, cluster counts, lensing, high-z QSO

galaxy evolution at 0.5<z<6 mass assembly

highest redshift galaxies

stellar mass estimate

Bundy et al. 2005

Assume a SED library (BCO3, Maraston O5, CBO7, ...) Best-fit template \Rightarrow stellar mass

NIR for accurate stellar masses

spec-z

photo-z

impact of the model in the stellar mass estimate

Systematic uncertainties dominated by the SED library with 1% accurate photo-z and deep NIR

global stellar mass function

Massive galaxies already in place at z~4 ?

Marchesini et al. 2009

global stellar mass function

Factor 3 discrepencies at the high mass end in current estimate at z>2

Dominguez-Sanchez et al. 2011

Tension between star formation history and stellar mass assembly

change of IMF with z ? Uncertainties in SFR/mass estimates at z>1 ?

First analysis at z>6

Stack in IRAC of z>6 candidates

Labbe et al. 2010

Select the quiescent population

color-color selection to distinguish between quiescent and dusty galaxies

Brammer et al. 2011

dashed reference 0.2<z<0.4

low mass quiescent created at z<1 /

Massive quiescent are already in place at z^{1}

Massive quiescent are already in place at z^{1}

Quiescent in semi-analytical models

Too steep slope in model

quenching too efficient for low mass galaxies

Stellar mass density of quiescent galaxies

Link structural parameters and galaxy stellar masses

Quiescent galaxies more compact at z~2

confirmed with WFC3

Cassata et al. 2011

Link structural parameters and galaxy stellar masses

compact galaxies dominate at z>1

/ minor mergers ?
/ Adiabatic expansion ?
/ Progenitor bias ?

Cassata et al. 2011

conclusions

 density and size of the massive quiescent galaxies evolve much faster at z>1

 Possible tension between SFR history and mass assembly at z>1.5

• Peak of SFR at z~2

VISTA and WFC3 in the next 5 years to study 1<z<3 in great detail

WFC3

ACS

conclusions

Numerous deep optical/NIR surveys in the next decade for weak lensing > rely on photo-z

conclusions

Numerous deep optical/NIR surveys in the next decade for weak lensing

> rely on photo-z

Combine weak lensing, stellar mass function, correlation function

> link stellar mass assembly with DM halo masses