Star-formation history from multi-bands counts

Damien Le Borgne IAP Université Pierre et Marie Curie

- Introduction: Lilly-Madau plot and galaxy counts
- Non-parametric inversion of infrared galaxy counts
- Perspectives with Herschel

Introduction

- Lilly-Madau plot : volume-averaged SFR(z)
 - Luminosity density => star-formation rate density.
 - Which is the best monochromatic tracer ?
 - H α : powerful but too red at high redshift
 - H β , etc. : accessible but extinction by dust
 - OII, OIII : calibration issues, dust
 - UV : dust correction uncertain
 - mid IR : rather good but PAHs in the way (24um= 8um at z=2)
 - Far IR : good census but calibration (SEDs) uncertain
 - Any other empirical tracer from simulations ?
- Idea : use multi-wavelength data simultaneously, statistically (volume average)

Introduction : galaxy counts

- Powers
 - Cheap and immediate : no redshift needed !
 - Large or deep sky areas probed
 - Simple measurement (except for confusion)
 - Weak constrains on models for monochromatic counts
 - No k-correction used for measurements (unlike LFs)
- Issues
 - Projected information : redshift is forgotten
 - Multi-wavelength
 - Calibration
 - Correlations
 - Modeling : panchromatic SED models

Idea

- Model the multi-λ IR counts with an evolving total infrared luminosity function (LF) Implies a knowledge of SEDs (k-corrections), cosmology
- Derive the cosmic star-formation history from the modeled LF and provide new constraints at high redshift
- Establish a model with conservative uncertainties, and give predictions for future observations of Herschel, SPICA, and SCUBA2.

=> Not another parametric model !

Inversion of IR counts

Empirical "modeling" non-parametric inversion of *multi-λ* counts from 15 to 850 μm

Hypotheses

The IR SEDs of galaxies at any redshift depend *only* on their total IR luminosities.

- The Chary & Elbaz (2001) library calibrated at z=0 is used. Other libraries (including or not evolution) can be easily tested.
- The total IR luminosity is a good tracer of the star-formation activity in a galaxy. The conversion used is SFR = $1.7 \ 10^{-10} L_{IR}$
- The infrared LF evolves smoothly
- Optional prior (not used in this talk): low-z measured LF (using redshifts)

Inversion of IR counts

Deriving the cosmic star-formation history

Comparing the inversion results with direct measurements : SFRD

Comparing the inversion results with direct measurements : SFRD

Sample :

- GOODS North (including HDF-N) and South (including CDFS)
- Total area~0.1 sq degree
- Spitzer/MIPS₂₄ S_{24µm}>30 uJy

Redshifts:

- Spectroscopic redshifts
- Photometric redshifts using ZPEG

Comparing the inversion results with direct measurements : LFs

Luminosity functions directly measured

Sample :

- GOODS North (including HDF-N) and South (including CDFS)
- Total area~0.1 sq degree
- Spitzer/MIPS $_{24}$ S $_{24\mu m}$ >30 uJy

Redshifts:

- Spectroscopic redshifts
- Photometric redshifts using ZPEG

Results :

- Good match with LeFloc'h et al 2005 (shallower).
- In agreement with the LF modeled from inversion up to z=3.
- Confirmed strong evolution in luminosity up to z=2, extended to z=3.

Comparing predictions with Herschel observations at 160um

Total IR LF from PEP Herschel

Gruppioni et al (2010)

Herschel counts redder than 250um

Perspectives

- New results from Herschel
 - New SED model from Elbaz et al. 2011 at z<2.5
 - Main sequence : tight SSFR(z), most IR galaxies, redder in IR
 - Starbursts : compact, hotter, bluer in the IR, higher SSFR

New inversion with these SEDs?

- If we assume all galaxies are main sequence: 1 SED !
 - => Bad modeling of counts
 - => averaging over z is too simplistic for galaxy counts.

Conclusions

- All the IR information available is used *simultaneoulsy* to derive the LF, hence the cosmic star formation history:
 - **a) Multi-**λ **IR counts** (15μm to 850μm) inverted with CE SED library contain enough information to recover the measured evolution of IR LF at 0.2<z<2 with reasonable uncertainties.
 - b) This inversion enables predictions at high redshift with the associated *uncertainties*, in contrast to classical models of the star-formation history (which give *a single guess*).
 - c) The **160** μm counts are slightly under-predicted by our non-parametric inversion model which contains a maximum number of degrees of freedom. Issues at z<0.2
 - d) The model is marginally compatible with **Herschel counts** at 110, 250, 350, 500 microns
- Making a better model is difficult
 - Depends on the SEDs. Universal Main-sequence + Starbusrts SEDs are not good enough. Use SED physical models (Fioc et al, in prep, GRAZIL, ...?)
 - Not one population SED(z, LIR) but two or more:
 LF₁(z,LIR) x LF₂(z,LIR) x ...=> Matrix sizes increase exponentially !
 - Link optical and IR with consistent model?

