Olivier Le Fèvre Laboratoire d'Astrophysique de Marseille

LARGE HIGH REDSHIFT SPECTROSCOPIC SURVEYS

Goals and principles Historical perspective Recent and on-going surveys Some "hard facts" Future surveys

Why "Surveys" ?

- 1. "Continents mapping": Map the distribution of galaxies in space
 - Large volumes
- 2. "Population surveys": understand the properties of galaxies, in relation with their environment
 - Large numbers
- 3. "Discovery surveys": pushing the observational frontier; higher redshifts, fainter galaxies, higher spectral/spatial resolution
 - Very faint
- 4. Provide robust sub-samples
 - More detailed follow-up studies: other wavelengths, IFU,...

Establish a robust scenario for galaxy formation and evolution based on secure facts

Some Principles

- Surveys need to be unbiased
 - Volume, luminosity/mass, type, environment...
 - Proper photometric catalogs
- Statistically robust
- Complete census

- Selection function control
 - Apriori hypotheses

- Large deep imaging surveys
- Large samples
- Multi-wavelength

Why spectroscopic-z surveys? (vs. photo-z surveys)

Spectral features

 Complementary to multi-λ Spectral Energy Distribution from photometry

Redshift accuracy

- A few tens to a few hundreds km/s
- Mapping ability
- High sample completness
 - Failure rate but limited catastrophic failures

Spectroscopic surveys need deep(er) imaging surveys

- Targets for spectroscopy are selected from imaging
 - Whatever the selection method (except "serendipitous" surveys)
- Imaging needs to be much deeper than spectroscopic limit
 - No bias from imaging
 - At least 1 mag. deeper (LSB, photometric errors...)
- Spectroscopic surveys progress follows imaging surveys progress
 - Field size
 - Depth
 - IR at higher redshifts
- Photometry+spectroscopy is needed to measure the SED, and get *mass, SFR, age, ...

Track evolution versus Environment, Luminosity, galaxy type,...

Historical perspective

- Early times: galaxies one by one (Hubble...)
- The invention of multi-object spectroscopy
 - First efficient MOS in the '90s
- '90s: the discovery age
 - 2dFGRS, SDSS in the local U.
 - CFRS, LDSS: z~1
 - LBG: z~3
- Today: the precision age

Spectra, one by one

E. Hubble

Today: multi-object spectroscopy

Deep multi-color imaging

- Target selection
- Multi-object spectroscopy

Today MOS have N_{obj} >> 100 Multiplies the efficiency of your telescope by N_{obj} !

State of the art today: VIMOS example

Strictly equivalent to 1000 8m telescopes doing single object spectro in parallel !

VIMOS at the ESO VLT measures the distance of 1001 distant galaxies in one single observation

VIMOS at the VLT observes 150 galaxies at once at high spectral resolution (R~4000)

The power of multi-slit MOS at high-z

- The workhorse of major observatories: CFHT-MOS/SIS, Keck-LRIS, VLT-FORS, GMOS, Keck-DEIMOS, VLT-VIMOS, IMACS ...
- Multi-slit: higher sky subtraction accuracy

DEIMOS

Past and present high-z spectroscopic surveys

Survey	Instrume nt	redshift	# galaxies	Exp. Time /gal eq. 8m	Total T survey
CFRS – 1995	CFHT-MOS	0 <z<1.2< td=""><td>600</td><td>2h</td><td>21 nights</td></z<1.2<>	600	2h	21 nights
LBG – 1999	KECK-LRIS	2.5 <z<4 .5</z<4 	1000	3h	40 nights
GOODS	VLT FORS2	0 <z<7.1< td=""><td>1000</td><td>2h</td><td>40 nights</td></z<7.1<>	1000	2h	40 nights
DEEP2, 2005+	KECK- DEIMOS	0.7 <z<1< td=""><td>50000</td><td>1.5h</td><td>70 nights</td></z<1<>	50000	1.5h	70 nights
VVDS, 2005+	VLT-VIMOS	0 <z<5< td=""><td>50000</td><td>1h 4h</td><td>35 nights</td></z<5<>	50000	1h 4h	35 nights
zCOSMOS, 2007+	VLT-VIMOS	0 <z<1.2 1.4<z<3< td=""><td>20000 10000</td><td>1h 4h</td><td>450h</td></z<3<></z<1.2 	20000 10000	1h 4h	450h
VIPERS, 2009+	VLT-VIMOS	0.5 <z<1 .2</z<1 	100000	1h	450h
VUDS , 2010+	VLT-VIMOS	2.5 <z<7< td=""><td>10000</td><td>14h</td><td>640h</td></z<7<>	10000	14h	640h

A lot of surveys

Another dimension: depth/redshift

From Baldry et al., 2010

Hard facts ! Which need to be reproduced by simulations...

- Redshift distribution N(z)
- LF/LD and Star formation history
- MF and stellar mass density history
- Merger rate history
- Build-up of the color-density relation
- Quenching at work ?

Redshift distributions From magnitude selected surveys

- i_{AB}≤22.5
- CFRS
- VVDS-wide
- zCOSMOS-bright

<z>=0.55 Still strong variance on 1deg scales:

Cosmic variance is a serious problem for most current highz surveys

i_{AB}≤24

Redshift distributions

<z>=1.3

Star formation history

 Directly derived from Luminosity Function

Peak in SFRD at z~2

- Strong rise from z=o to z=1
- Plateau to z~3
- Decrease beyond z~3?
- Difficulties
 - Need complete samples
 - Transform luminosity into SF, dust correction
 - Large uncertainty on LF faintend slope at high-z
 - SFRD from LF not consistent with SFRD from MF

Wilkins et al., 2009

FUV global luminosity density since z=5

Downsizing :

Luminous galaxies form most of their stars early

Faint galaxies contain more star formation at low z

Downsizing trends observed from various indicators

Tresse et al., 2007

VUDS: VIMOS Ultra-Deep Survey

- Magnitude selected $23 \le i_{AB} \le 24.75$
- 15h blue + 15h red integrations
- First results from 1000 galaxies
- On-going: 10000 galaxies
- LF and SFRD derived from "spectroscopy-only" data
- Bright end well constrained
- -Despite depth, still major uncertainty on LF slope @ z>1.5

Cucciati et al., astroph

Assembly of stellar mass

- Very fast mass growth in early/red galaxies 1<z<2
- Steady mass growth in star-forming galaxies

Mass assembly *-mass vs. total mass

- Strong dependency of today's results on mass function on SED-derived "stellar mass"
- SED-derived *-masses differ by ~x2
- Need direct measurements of "total galaxy mass"
 - Use kinematics (2D/3D)
 - Use weak lensing

Tresse et al., VIMOS survey

Merger rate history

1/3

What is the contribution of mergers to galaxy evolution ?

- Merger rate from spectroscopically measured pairs
 - Major (ratio>1/4), and minor (ratio <1/4) mergers
- Measurements
 - zCOSMOS
 - DEEP2
 - VVDS

Merger rate history

2/3

- Merger rate is depending on luminosity/mass
- L_B≥L_B* galaxies have grown 25% of their mass from mergers since z~1 (1/4 minor, ³/₄ major)
- Major mergers more important for the mass growth of ETGs (40%) than LTGs (20%)

Mergers contribute significantly to mass growth since z~1

Major mergers, de Ravel et al. 2009

Minor mergers, Lopez-sanJuan et al. 2009

Merger rate history

3/3

- Evolution of merger rate beyond z~1 is not yet securely established
- Peak in major merger rate at z~1.5?
 - On-going from VVDS and MASSIV

the build-up of the Colour-density relation

Redshift

log Pproj

Follow-up surveys

- Use bias-free MOS surveys to select unbiased populations
- Complete IFU-3D surveys
 - MASSIV @z~1.5
 - SINS @z~2

 - MUSE

MASSIV: Mergers at z~1.5

Serendipitous power of multi-slit MOS

Serendipitous redshift surveys

- Rauch et al. 2008, 92h VLT, 27 LAE
 - 10⁻¹⁸ erg.cm⁻².s⁻¹ !
- VVDS: Cassata et al., 2011
 - 15-30h VLT, 1.5x10⁻¹⁸ erg.cm⁻².s⁻¹
 - 10,000 slits, 25 arcmin² of "blank sky" covered
 - 217 serendipitous LAE 2<z<6.5 !</p>
- Steep slope of the LF: α=1.7
- LAE: dominant contribution to SFRD beyond z~5
- MUSE will contribute to the faint end

Discovery space: z>6

- Spectroscopy needed !
 - SFH beyond z=4 is mostly photometry-selected
- Photo-z or color selection is increasingly uncertain at higher z
 - LAE selection promising (Ouchi et al., 2009)
 - Serendipitous power (Cassata et al., 2011)
- Very deep NIR imaging needed
 - Ultra-Vista at ESO
- Very deep NIR spectroscopy needed

Breaking the z-frontier: need for efficient NIR multi-object spectrographs

- MOSFIRE on Keck: 2012
 - YJHK, 6x6 arcmin²
 - 45 <u>slits</u>
- KMOS on VLT, 2012 ?
 - YJHK, 7 arcmin diameter
 - 24 IFUs, 2.8x2.8 arcsec²
- LUCIFER on LBT
- EMIR on GTC
- NIRSPEC-JWST: 2018...

Future surveys

- Very wide field: toward all sky to z~2
 - VIMOS-VIPERS, on-going: 10⁵ redshifts, z~1
 - Big-Boss, PFS-SUMIRE...: 3×10⁷ redshifts, z~1-1.5
 - ESA-EUCLID: 5×10⁷ redshifts, z~2
- Large surveys, mass assembly, z~2-6
 - VUDS: on-going at the VLT: 10⁴ redshifts
 - Proposed for the VLT-VIMOS: 10⁵ redshifts
- Large galaxy kinematics surveys
 - VIMOS: Tresse et al., 1000-z, on going
 - VLT-KMOS, 24 IFU, near-IR
 - MUSE surveys
- Reionisation, early SFH, z>6
 - VUDS: VIMOS Extreme Spectroscopic Survey
 - On-going at the VLT-VIMOS: 10⁴ redshifts, z~4-7.2
 - JWST: NIRSPEC, MIRI
 - EELT: DIORAMAS, EAGLE

EELT-DIORAMAS

