Where are the baryons? constraints from absorption line studies

Celine Peroux (Laboratoire Astronomique de Marseille)

Overview

the hidden baryons problem
intergalactic medium/galaxy co-evolution

Overview

- the hidden baryons problem - intergalactic medium/galaxy co-evolution

Cosmological Microwave Background

Deuterium Primordial Abundance

 Constrains on Omega_baryons

(*Tytler et al. 2000*)

Baryons Census

Carle Car average

(Nicastro, Mathur & Elvis 2009, Science)

Phase Diagramme

Mass Fraction Evolution

Warm-Hot Intergalactic Medium

WHIM: gas with 10⁵<T<10⁷ K

multiphase ISM, stellar formation, feedback, galactic winds \Rightarrow to reproduce the history of star formation

50Mpc/h ΛCDM simulation, with hydro code. (*Cen & Ostriker 1999*)

WHIM Tracers

(Bregman 2007, AARA)

Simulating the IGM

CII CIV OVI z=20.0

32 Mpc/h box 17,000,000 gas particles

(Oppenheimer, Dave & Finlator 2009)

Observation of the IGM

Lyman-alpha
 Forest

Detected in absorption in Ultra-Violet

- Absorption in the spectrum of a background source
- Broad Lyman-alpha Absorbers (BLA)

(Lehner et al. 2007)

UV Absorption

• OVI, OVII abs, broad Ly-alpha (UV abs)

(*Tripp et al. 2007*)

X-ray Absorption

• OVII, OVIII: $10^{6} < T < 10^{7} K$

pbl with foregrounds

BINGO! Project (Agence Nationale de la Recherche)

• Marseille (Deharveng, Milliard, Tresse, Vibert, Conseil, Frank, Popping, Zafar, Peroux)

• Paris (Teyssier, Rasera, Charlot)

• Lyon (Blaizot, Courty)

Mare Nostrum Simulation

- dark matter density
- gas density
- gas temperature
- star colors

=> study possibility to look for
signture of WHIM in emission
=> approach based on simulation +
observations

(Rasera & Teyssier)

Phase Diagramme

Frank et al. (2011)

Lyman-alpha Emission

We we all the set of t

FIREBall Instrument

A MARK & ANT

- balloon-born
 2000 Ang window
 1st flight July 2007
- science flight May 2009
 => upper limits
- next flight 2013-2014

Overview

- the hidden baryons problem
- intergalactic medium/galaxy co-evolution

Evidence for Winds

Velocity Offsets in Lyman Break Galaxies

• outflows

(Pettini 2003)

Other Observational Evidence for Winds

- NaID in local ULIRGS (Crystal Martin et al.)
- MgII in high-z galaxies
- UV-bright galaxies (Heckman et al.)

Metal Pollution

Carbon IV
 evolution in the
 IGM

(Ryan-Weber, Pettini, Madau & Zych 2009)

Simulations of Omega_CIV

Evidence for Accretion

Evidence for Accretion

Simulations of DLAs

Table 1. Selected previous simulations of DLAs.

Reference(s)	Туре	SF	Ionization/RT	Max Vol ⁽¹⁾	Gas res ⁽²⁾
Katz et al. (1996b)	SPH	None	Plane correction ⁽³⁾	(22 Mpc) ³	10 ^{8.2} M⊙
Gardner et al. (1997a)	SPH	None	Plane correction ⁽³⁾	(22 Mpc) ³	10 ^{8.2} M _O
Gardner et al. (1997b)					Ũ
Haehnelt et al. (1998)	SPH	None	Den. cut ⁽⁴⁾	N/A ⁽⁵⁾	10 ^{6.7} M _O
Gardner et al. (2001)	SPH	Yes, weak FB ⁽⁶⁾	Plane correction ⁽³⁾	(17 Mpc) ³	10 ^{8.2} M _O
Cen et al. (2003)	Eulerian	Yes, with FB ⁽⁶⁾	Hybrid ⁽⁷⁾	(36 Mpc) ³	11 kpc
Nagamine et al. (2004a)	SPH	Multiphase/GW ⁽⁸⁾	Eq. thin/ $MP^{(8)}$	(34 Mpc) ³	$10^{4.6} M_{\odot}$
Nagamine et al. (2004b)		-	-	_	Ũ
R06	Adpt Eulerian ⁽⁹⁾	None	Non-eq. live RT/post-processor ⁽¹⁰⁾	(8 Mpc) ³	0.1 kpc
Nagamine et al. (2007)	SPH	Multiphase/GW ⁽⁸⁾	Eq. thin/ $MP^{(8)}$	(14 Mpc) ³	10 ^{5.0} M _O
R08	Adpt Eulerian ⁽⁹⁾	Basic	Non-eq. thin/post-processor ⁽¹⁰⁾	(45 Mpc) ³	0.09 kpc
This work	SPH	Yes, with FB ^(6,11)	Eq. thin/RT post-processor ⁽¹¹⁾	(25 Mpc) ³	$10^{4.0}\mathrm{M}_{\odot}$

⁽¹⁾The largest volume simulated for the study, in comoving units.

⁽²⁾The best gas resolution achieved in the study, which may not have been achieved in the largest volume. For SPH (Lagrangian) simulations, we give the smallest particle mass; for Eulerian simulations, we give the finest grid resolution (in physical units at z = 3).

⁽³⁾UV background in optically thin limit; sightlines post-processed using plane-parallel radiative transfer and ionization equilibrium.

⁽⁴⁾UVB optically thin, but in post-processing all gas particles assumed fully neutral for number densities $n > 10^{-2} \text{ cm}^{-3}$.

Simulation of Omega_HI

- Nagamine 04, Tescari 09: mass reprocessing
- Pontzen 08: only z~3
- Hopkins et al., Bauermeister et al., Obrewskov et al.

=> new data coming with BOSS (BigBOSS, ngCFHT)

Is Delta_v a good proxy for mass?

Ledoux et al., Zwaan et al.

Accretion along Filaments

(Dekel et al. 2008)

Connecting Gas & Star Formation

• Looking in emission for absorbing gas with SINFONI

Q1009 Ha(z=0.887)

(Peroux, Bouche et al. 2011a, 2011c)

SFR per unit area

robust estimates

+ 1 non-detection with known CII*

(Peroux, Bouche et al. 2011c)

Metallicity Map

- N2 parameter (Pettini & Pagel 2004)
- collapsed [NII]/H-alpha ratio map
- metallicity rather uniform

=> possible signature of accretion

(Cresci et al. 2010, Nature)

(Peroux, Bouche et al. 2011a)

Metallicity Gradient

- this survey more than double number of systems for which such measures are possible
- 'inverted' gradient
 due to poor N2 metallicity
 indicator or
 difference neutral/ionised gas

Impact Parameter [kpc]

(Peroux, Bouche et al. 2011c)

Kinematics

compare rotation curve and absorption profile

(Peroux, Bouche et al. 2011b)

Galaxies/IGM co-Evolution

• CGM = Circum-Galactic Medium

Conclusion

Wanted a - Aut

 Galaxy evolution studies need to take into account interactions with the InterGalactic Medium