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Lyx blobs - LABs

LAB: 100 kpc, 104 erg/s
Extended Lyx nebulae at

high redshifts (z=2-3) 1]
The LAB debate started in > '
2000 ™
Usually found in overdense ‘- “
regions

They’re not so many - yet
~15 giant LABs (>100 kpc) 3
~200 LABs (>30 kpc)

The mystery is:
What drives the emission?

Matsuda et. al. (2010)
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Some LABs are even more
mysterious - they contain no
visible galaxies

Erb et.al. (201 1)



What powers Lya blobs?

Theories and simulations

A lot of work has been done on models and simulations
of LABs, yet their nature remains elusive

3:
I: .

i SNe winds
;-%:::atf_‘:::fen (Taniguchi&Shioya,
Steidegli ’ Ohyama, Mori)

.
2: Cold accretion

(Fardal, Dijkstra,
Faucher-Giguere,
Goerdt, us)

UV fluorescence
(Kollmeier,
Cantalupo)

Cold streams are
predicted by
simulations but never
detected

Streams heat by
gravitational
dissipation and cool via
Lyx emission

To simulate Lyx emission from cold accretion, one should
resolve the competition between gravitational heating and

Joakim Rosdahl Lyx cooling in the presence of an inhomogeneous UV field.



Using state-of-the-art RHD simulations, we investigate:

e Are cold flows responsible for LABs?

¢ The observability of cold streams:
e How deep do we need to go to detect those streams?
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~ Mpc , z= 3.00

Simulation setup

RAMSES-RT: Radiation-hydrodynamics w. non-equilibrium cooling

3 cosmological zoom simulations, focusing on 3 halos at redshift 3

= Halo masses: 10'' /10'2/10'3 M.
= DM mass resolution: 104 /7 107/ 5 x107 M.
= Cell resolution: 200 / 400 pc/ 800 pc

= Refinement strategy resolves streams to unprecedented levels

Star formation: ny > | H/cc - ISM is exluded from Lyx analysis
No stellar feedback, no metals - nhot important in the cold streams

RT: Propagation of the UV background - proper modelling of stream cooling
for the first time



3 halos - a mass study
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Ly emissivity

Rest-frame Lyx surface emissivity
Siferg s™' kpc™]
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Ecoll = CLm(T) Re N €Lya

DANGER!!

Operator splitting may give
severe underestimate
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Operator splitting and hydrodynamics

De-compose the hydro-equations into parts that are easy to deal with

O(E)+0(E+Pu=I(o, T) - Ap,T) WE+V-uw(E+P)=0

Advection Chemistry (cooling)

O. Splitting

and

O(E) =T(p,T) - Alp, T)

Equilibrium between advection and cooling
T with operator splitting

A

E i > time
t tﬁAt

The RAMSES output is always here!
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Operator splitting and hydrodynamics

Without operator splitting, the temperature might evolve more like this
(and the equilibrium temperature might actually be higher):
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e Usually ok if T is slightly off
¢ But in the case of Ly0( emission
it is not ok e—
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e Solution:
‘Post-process’, with really small timestep
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Lyx ‘observations’

Rest-frame Lyx surface emissivity Observed Ly0( surface emissivity

Sferg s~ kpc] m~2 arcsec™?]
I -—--
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\Obs sensitivity limit

-current
-future

(MUSE, (K)CWI)

100 Kpc

eLuminosity distance
e Convolution with PSF of
FWHM=0.8 arcsec

eCosmic transmission f,=0.66



Observational predictions
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Comparison to observations

Do our LABs look like the real thing?

Observations of the 14
biggest redshift 3 LABs
from Matsuda et al. 2010

Us, at same redshift an
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Comparison to observations

Are the statistics consistent?
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= A(M) convolved with halo mass function

= Compared to 202 LABs from Matsuda et al.
= We overestimate observed areas by a factor of 2-3
Bad statistics, environmental effects, cosmic extinction

Observational uncertainties: Noise, continuum subtraction, Lyx absorbers
Physics: Effects of winds, metals, local UV enhancement - can all be

negative
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Comparison to observa

New developments!

Central Powering of the Largest Lyman-alpha Nebula is Re-
vealed by Polarized Radiation

Matthew Hd\t\ ' Claudia Scarlata®”, and Brian Siana®
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High-redshift Lyman-alpha blobs"* are extended, luminous, but rare structures that appear
to be associated with the highest peaks in the matter density of the Universe*™®. Their en-
ergy output and morphology are similar to powerful radio galaxies’, but the source of the
luminosity is unclear. Some blobs are associated with ultraviolet or infrared bright galaxies,
suggesting an extreme starburst event or accretion onto a central black hole®™'". Another
possibility is gas that is shock excited by supernovae'"!'?
ated with galaxies' ™, and may instead be heated by gas falling into a dark matter halo
The polarization of the Lyo emission can in principle distinguish between these options®*-32,
but a previous attempt to detect this signature returned a null detection™. Here we report
on the detection of polarized Lyo from the blob LAB1%. Although the central region shows
no measurable polarization. the polarized fraction () increases to ~ 20 per cent at a radi

. However some blobs are not associ-
15-19

“of 45 Kkpc, formmg an almost complete polarized ring. The detection of poldrucd radiation |

is inconsistent with the in situ production of Lya photons, and we conclude that they must |f
have been produced in the galaxies hosted within the nebula, and re-scattered by neutral )
h\ dro;,en
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The L)'u emission line of neutral hydrogen 1s a frequently used observational tracer of evolv-
ing galaxies in the high redshift Universe. Lya imaging surveys typically find a large number
of faint unresolved objects and a small fraction of extremely luminous and spatially extended sys-
tems that are usually referred to independently as Lyman alpha blobs (LABs). The compact sources
usually appear to be more ordinary star forming galaxies whereas, since their discovery, much con-
troversy has surrounded the true nature of LABs. Because one of the possible modes of poweringe




Summary and conclusions

First fully consistent RHD simulations of accretion streams
Cold streams are on-the-verge Lya observable in massive halos

Cold accretion can explain most LABs

= We overpredict LAB abundance by a x2, but a number of
systematic uncertainties may dig us out of that hole

= Still no explanation LABs without galaxies - except by
resorting to ‘hidden’ galaxies

Prospectives
Add physics to the powering of LABs:

= Scattering, UV photo-fluorescence, SNe/AGN winds
= Comparison to polarization observations




