Lyman- α Radiation Transfer in a virtual dwarf isolated galaxy

Anne Verhamme CRAL

Oxford Astrophysics

a.verhammel@physics.ox.ac.uk

Observatoire de Lyon

anne.verhamme@univ-lyon1.fr

Yohan Dubois Julien Devriendt Adrianne Slyz & Jeremy Blaizot Thibault Garel Roland Bacon Bruno Guiderdoni $\begin{array}{c} \mbox{Description of the simulations}\\ \mbox{How the ISM structure impacts } Ly\alpha \ transfer\\ \mbox{Orientation effects}\\ \mbox{Ly}\alpha \ diffuse \ emission \end{array}$

Motivations

Anne Verhamme Ly α Radiation Transfer

Table of Contents

Description of the simulations

- Hydrodynamical framework
- Ly α radiation transfer
- How the ISM structure impacts Ly α transfer
 - Ly α images
 - Spectral shapes
 - Escape fractions
- Orientation effects
 - Spectral shapes
 - EW(Ly α) distributions
 - Angular escape fractions
- Ly α diffuse emission

Hydrodynamical framework $Ly\alpha$ radiation transfer

Hydrodynamical simulations of a dwarf isolated galaxy

Dubois & Teyssier 2008

Description of the simulations

- AMR code RAMSES Teyssier 2002
- dwarf : $M_{\rm gal} = 10^{10} \, {\rm M}_{\odot}$
- isolated : NFW density profile
- size of the box = 300 kpc
- gas fraction $f = \Omega_b / \Omega_m \sim 15\%$
- spin parameter $\lambda = 0.04$
- cooling,starformation,feedback → See Dubois & Teyssier 2008,

Verhamme et al 2011, in prep

 Description of the simulations

 How the ISM structure impacts $Ly\alpha$ transfer

 Orientation effects

 $Ly\alpha$ diffuse emission

Hydrodynamical framework $Ly\alpha$ radiation transfer

MCLya : 3D Ly α radiation transfer code

General description of the code

- Monte Carlo technics, 3D, nested grid, Ly α + UV transfer
- MPI parallelised
- physics included : HI, dust, Deuterium

Inputs

- distribution of sources
- H I distribution
- dust distribution
- velocity dispersion of the gas
- velocity field

Outputs

- integrated or resolved spectra
- Ly α images along any line of sight
- escape fraction
- non observables

nb of scatterings, time, altitude, emission location, etc...

Atelier CRAL, Lyon

Anne Verhamme

 Description of the simulations

 How the ISM structure impacts $Ly\alpha$ transfer

 Orientation effects

 $Ly\alpha$ diffuse emission

Hydrodynamical framework $Ly\alpha$ radiation transfer

Our two ISM models

the HOT galaxy G1

- EoS : $T_0 = 10^4$ K and $\rho_0 = 0.1$ H.cm⁻³
- minimum cell size : $\Delta x = 147$ pc
- 10⁵ photons
- calculation time : \sim 20000 hours

the COLD galaxy G2

- EoS : $T_0 = 10^2$ K and $\rho_0 = 10$ H.cm⁻³
- minimum cell size : $\Delta x = 18$ pc
- 5×10^6 photons
- calculation time : \sim 200000 hours

Hydrodynamical framework $Ly\alpha$ radiation transfer

Distribution of neutral gas

the HOT galaxy G1

the COLD galaxy G2

Atelier CRAL, Lyon

Anne Verhamme

Ly α Radiation Transfer

 $\begin{array}{c} \mbox{Description of the simulations}\\ \mbox{How the ISM structure impacts } Ly\alpha \ transfer\\ \mbox{Orientation effects}\\ \mbox{Ly}\alpha \ diffuse \ emission \end{array}$

Hydrodynamical framework Lya radiation transfer

Distribution of sources

the HOT galaxy G1

the COLD galaxy G2

Hydrodynamical framework Lya radiation transfer

Distribution of sources

the COLD galaxy G2

Anne Verhamme

Ly α Radiation Transfer

Ly α images Spectral shapes Escape fractions

Comparison of the ISM models : Ly α images

 $Ly\alpha$ images Spectral shapes Escape fractions

Comparison of the ISM models : spectral shapes

Ly α images Spectral shapes Escape fractions

Comparison of the ISM models : escape fractions

Ly α images Spectral shapes Escape fractions

Summary : Comparison of the ISM models

The HOT galaxy G1

• continuum escape fraction $f_{esc} = 0.95$

The COLD galaxy G2

• continuum escape fraction $f_{esc} = 0.22$

Ly α images Spectral shapes Escape fractions

Summary : Comparison of the ISM models

The HOT galaxy G1

- continuum escape fraction $f_{esc} = 0.95$
- Ly α escape fraction $f_{esc} = 0.55$

The COLD galaxy G2

- continuum escape fraction $f_{esc} = 0.22$
- Lyα escape fraction
 f_{esc} = 0.05

Ly α images Spectral shapes Escape fractions

Summary : Comparison of the ISM models

The HOT galaxy G1

- continuum escape fraction $f_{esc} = 0.95$
- Lyα escape fraction
 f_{esc} = 0.55
- symetrical double-peaked spectra

The COLD galaxy G2

- continuum escape fraction $f_{esc} = 0.22$
- Ly α escape fraction $f_{esc} = 0.05$
- asymetric peaks toward red -> outflow

Ly α images Spectral shapes Escape fractions

Summary : Comparison of the ISM models

The HOT galaxy G1

- continuum escape fraction $f_{esc} = 0.95$
- Ly α escape fraction $f_{esc} = 0.55$
- symetrical double-peaked spectra
- no diffuse halo

The COLD galaxy G2

- continuum escape fraction $f_{esc} = 0.22$
- Lyα escape fraction
 f_{esc} = 0.05
- asymetric peaks toward red -> outflow
- diffuse halo a la Steidel et al. 2011

Ly α images Spectral shapes Escape fractions

Summary : Comparison of the ISM models

The HOT galaxy G1

- continuum escape fraction $f_{esc} = 0.95$
- Lyα escape fraction
 f_{esc} = 0.55
- symetrical double-peaked spectra
- no diffuse halo

The COLD galaxy G2

- continuum escape fraction $f_{esc} = 0.22$
- Lyα escape fraction
 f_{esc} = 0.05
- asymetric peaks toward red -> outflow
- diffuse halo a la Steidel et al. 2011

Comparison of the ISM models

Strong discrepencies on Ly α AND UV properties

 $\longrightarrow {\rm Ly}\alpha$ RT worth if small scales physics included

Spectral shapes EW(Ly α) distributions Angular escape fractions

Orientation effects on spectral shapes

integrated spectra

density map edge-on

Spectral shapes $EW(Ly\alpha)$ distributions Angular escape fractions

Orientation effects on EW(Ly α) distributions

 $\begin{array}{c} \mbox{Description of the simulations}\\ \mbox{How the ISM structure impacts } \mbox{Ly} \alpha \mbox{ transfer}\\ \mbox{Orientation effects} \end{array}$

 $Ly\alpha$ diffuse emission

Spectral shapes $EW(Ly\alpha)$ distributions Angular escape fractions

Orientation effects on EW(Ly α) distributions

Description of the simulations How the ISM structure impacts Lyα transfer Orientation effects

 $Ly\alpha$ diffuse emission

Spectral shapes $EW(Ly\alpha)$ distributions Angular escape fractions

Orientation effects on the escape fractions

Angular escape fractions

- Lyα f_{esc} (flux !) face-on 10 times higher than edge-on → detection biased towards face-on galaxies ?

histogram of theta in G2

Spectral shapes EW(Ly α) distributions Angular escape fractions

Summary : Orientation effects

Description

- f_{esc} (Ly α flux) 10 times higher face-on than edge-on
- strong correlation between EW(Lyα) and inclination
- correlation between spectral shape and inclination

Spectral shapes EW(Ly α) distributions Angular escape fractions

Summary : Orientation effects

Description

- f_{esc} (Ly α flux) 10 times higher face-on than edge-on
- strong correlation between EW(Lyα) and inclination
- correlation between spectral shape and inclination

Implications

- detection biased towards face-on high-z galaxies
- over/under-estimate of $SFR(Ly\alpha) = 9.1 \times 10^{-43} L(Ly\alpha)$
- intrinsic scatter in the observed correlations (EW vs E(B-V), SFR, UV mag, mass...)

Ly α diffuse emission face-on

G2 face-on

G2 edge-on

Atelier CRAL, Lyon

Anne Verhamme

 $Ly\alpha$ Radiation Transfer

Surface Brightness profiles

G1 face-on

Summary

Results

- Strong discrepancies in the Lyα properties of G1 and G2
 → Lyα RT worth in simulations where the physics of the cold gas
 is followed
- Orientation effects on Lyα properties of a virtual galaxy
 - \longrightarrow detection bias toward face-on galaxies
 - \rightarrow correlation EW(Ly α) vs inclination, spectral shape vs inclination
- diffuse Ly α halo around G2 face-on, SB profile a la Steidel et al. 2011

 $\begin{array}{l} \mbox{Description of the simulations}\\ \mbox{How the ISM structure impacts } Ly \alpha \ transfer\\ \mbox{Orientation effects}\\ \mbox{Ly} \alpha \ \mbox{diffuse emission} \end{array}$

Conclusions

Next steps

isolated galaxies

- coupling with ionising radiation transfer code $_{\textit{Rosdahl et al. 2011}}$ \longrightarrow ionisation state of the ISM better modeled
- galaxies 10 times, 100 times more massive
 → decrease of Lyα escape with galaxy mass ?

Next steps

isolated galaxies

- coupling with ionising radiation transfer code Rosdahl et al. 2011
 → ionisation state of the ISM better modeled
- galaxies 10 times, 100 times more massive
 → decrease of Lyα escape with galaxy mass ?

galaxies in their cosmological context

- on going work on a galaxy at $z \sim 3$
 - \longrightarrow Circum/Inter-galactic interactions ?
 - \longrightarrow do orientation effects still play a role?
- ongoing work on Ly α blobs simulations ${\it Rosdahl \ et \ al. \ in \ prep}$