Probing the spatially resolved ISM of LyC leaking galaxies with MUSE

Arjan Bik (Stockholm)

Chinmaya Nagar (Uppsala, now Cologne), Veronica Menacho (Stockholm)

Motivation

- Epoch of Reionization:
 - Consensus: (low-mass) starburst galaxies responsible for re-ionization
 - Cannot detect LyC radiation directly of those galaxies (neutral IGM)
 - Spatially resolution (even with JWST)
 - Nearby galaxies (indirect indicators)

Nearby LyC galaxies

- Extreme starburst galaxies in the local universe
- Highly ionised ISM, Compact, low metallicity
- Selected on e.g. high [OIII]/[OII] ratio (Izotov+, 16a,b, Izotov+ 18a,b): ~ 10 LyC leakers
- Observed with the COS spectrograph at HST: z ~ 0.3
- LzLCS (Flury+22a,b): 35 galaxies with measured LyC radiation.
- F_esc: between few and 50 %

Flury et al, 2022b

Spatially resolved ISM with MUSE

Nearest LyC leaker: Haro 11, 90 Mpc ullet

Komarova et al, 2024

Menacho et al, 2019

Velocity sliced line ratios

- Very bright emission lines: channel maps
- Different velocity show different substructure:
- Ionisation channels
- Higher velocity gas: more ionised.
- BlueMUSE: 2x spectral resolution in [OIIII], more velocity details.

Menacho et al, 2019

MUSE survey LzLCS galaxies

- MUSE, Widefield with AO mode
- 13 galaxies, PI: Göran Östlin
- Ionised gas distribution
- Spatial resolved ionisation maps
- Ionisation channels
- Master thesis Chinmaya Nagar (PhD

Property	Galaxy						
	J0911	J1011	J0925	J0958	J0826	J1314	J1604
Redshift (z)	0.2622	0.3321	0.3142	0.3017	0.2972	0.2961	0.312
Log stellar mass (M_{\odot})	10.41	9	8.38	8.696	8.509	10.464	8.93
LyC Flux Density $(10^{-19} \text{ W m}^{-2} \text{ nm}^{-1})^{\ddagger}$	7.256	1.994	3.48	0.416	< 0.205	< 0.29	< 0.2
$f_{\rm esc}^{\rm LyC}({ m H}eta)$	0.083	0.041	0.054	0.012	< 0.012	< 0.005	< 0.0
$f_{\rm esc}^{\rm LyC}({ m UV})$	0.023	0.09	0.092	0.019	< 0.009	< 0.001	< 0.0
${ m SFR}_{{ m H}eta}~({ m M}_\odot~{ m yr}^{-1})$	27.54 ± 1.39	28.57 ± 1.31	24.54 ± 1.3	15.63 ± 0.75	6.63 ± 0.48	22.59 ± 1.14	21.87 2.16
$\Sigma_{ m SFR,Heta}~(m M_\odot~yr^{-1}~kpc^{-2})~^{ m A}$	22.38 ± 6.03	58.47 ± 28.00	24.09 ± 7.60	15.13 ± 4.07	3.34 ± 0.82	3.84 ± 1.00	32.35 8.41
$\Sigma_{ m SFR,f1100}~(m M_\odot~yr^{-1}~kpc^{-2})~^{ m B}$	41.40 ± 11.24	50.11 ± 24.23	7.16 ± 2.24	4.70 ± 1.27	5.04 ± 1.27	12.88 ± 3.41	8.35 2.09
EW _{Hβ} (Å)	73.23 ± 1.49	193.74 ± 9.84	172.78 ± 3.99	131.15 ± 6.57	107.82 ± 4.53	35.79 ± 0.64	172.2 ± 5.4
$12 + \log_{10}(O/H)$	8.6 ± 0.037	7.918 ± 0.034	8.22 ± 0.037	7.801 ± 0.037	8.304 ± 0.051	8.334 ± 0.036	8.153 0.064

J0911+18 (LzLCS) z=0.26 $f_{esc} = ~7\%$ O32=1.812+log(O/H) = 8.14

15.0 14.5 14.0 13.5 9:11:13.0 12.5 12.0 11.5 11.0

J1011+19 (lzotov) z=0.33 $f_{esc} = 11.4\%$ O32=2712+log(O/H) = 7.99

Integrated spectra (3" diameter)

J0911+18 (LzLCS) z=0.26 $f_{esc} = ~7\%$ O32=1.8 12+log(O/H) = 8.14

J1011+19 (lzotov) z=0.33 $f_{esc} = 11.4\%$ O32=2712+log(O/H) = 7.99

J0911+18 (LzLCS)

[OIII]5007

J1011+19 (Izotov)

Spatial resolved ionisation maps

Ionisation vs density bounded: can LyC escape?

[OIII]/[OII]

Master thesis Chinmaya Nagar

What will BlueMUSE bring?

- **Bluer:**
 - [OII] doublet (3726,3729Å): density
 - [OIII] auroral line 4346Å: temperature, see talk Augusto Lassen
 - More exotic lines (for slightly higher redshift):
 - [NeV] 3426Å (z=0.05 @ 3600 A). NeV/HeII: AGN contribution: Izotov et al, 2012
 - MgII (2795.5, 2802.7Å) doublet (z=0.28 @ 3600 Å): resonant lines: traces the cool gas like Lya (e.g. Chisholm et al, 2020)

Non stellar feedback?

- Contribution of ULXs
- Hell emission in MUSE:
- Contribution of AGNs?
- [NeV] 3426Å (z=0.05 @ 3600 A).

Harris et al, 2021

ESO 338-IG04: Oskinova, Bik et al, 2019

NeV at high z

- Chisholm et al, 2024
- Evidence of a narrow-line intermediate mass blackhole
- NeV/Hell: AGN contribution: Izotov et al, 2012

MgII

- MgII observations extreme starburst:
- Resonance line (like Lyα)
- Line ratio traces column density neutral hydrogen (knowing the metallicity)
- MgII more extended than ionised gas
- Use as a proxy for LyC escape.
 - $N_{H0} < 10^{17} \text{ cm}^{-2}$ optically thin for LyC photons

LzLCS: Leclercq et al., 2024

Chisholm et al., 2020

Summary

- 3.0

-2.5

-2.0

1.5

- 1.0

032

N_H⁰ [10¹⁶ cm^{−2}] 0.1 2.00 1.75 **Observed Value** F₂₇₉₆/F₂₈₀₃ 1.50 1.25 1.00 щ 0.001 0.01 0.1 τ_{2803}

