# Systematic mapping of the most massive stars with BlueMUSE

#### **N.** Castro

Georg-August-Universität, Göttingen Leibniz-Institut für Astrophysik, Potsdam















(see Langer & Kudritzki 2014) (Wang+ 2020, 2022)



## **Stellar archaeology:**



# **Stellar archaeology further away:**

### **Antennae galaxies (22 Mpc)**



(Weilbacher et al.)

## Multi-object and integral field spectroscopy



## Multi-object and integral field spectroscopy



# Integral field spectroscopy on resolved stellar populations (Roth+ 2019)

M92 (Kamann+ 2013) **By PMAS** (Roth+ 2005)  $-69^{\circ}05'20''$  $40^{\circ}$ Dec (J2000) 06'00" **NGC362** (Kamann+ 2013) 20'**By ARGUS** (Pasquini+ 2002) 40''30" 07'00"  $52^{s}$  $48^{s}$  $44^s$  $40^{s}$  $36^{s}$  $5^h 38^m 32^s$ 001RA (J2000)

NGC2070 (Castro+ 2018,2021)

By MUSE (Bacon+ 2014)

IC1613 (M. Garcia priv. Com.)

By VIMOS (Le Fèvre+ 2003)





(Crowther+ 2017: Castro+ 2018)



(Crowther+ 2017: Castro+ 2018)



### NGC2070 analysis (Castro+ 2018,2021):

- We extracted more than 2200 sources
- Average radial velocity of 271 km/s
- Modeling 333 stars with S/N > 50
- We find two groups in the main sequence, with estimated ages of 2.1 ± 0.8 and 6.2 ± 2 Myr.
- A subgroup of 52 stars is apparently beyond the main sequence phase, which we consider to be due to emission-type objects (Castro+ 2018b)

Castro+ 2014 Ekström+ 2012







Intensity maps





### **Broadening maps**



**Extinction maps** 



**Temperature maps** 



### **Density maps**

(Castro+ 2018)

## Integral field spectroscopy on resolved stellar populations



NGC3603 (Mahy et al.)



NGC330 (Bodensteiner et al.)



**SN1987A** (Fransson et al.)



NGC602 (Zeidler et al.)



NGC2005 (Kamann et al.)



NGC346 (Hamann et al.)

# Resolved stellar population in the Local Group with MUSE:

## **NGC300 (2 Mpc)**



### **Extragalactic goals:**

- Resolved stellar populations (e.g. Castro+ 2012)
- Study the ISM and feedback mechanisms (e.g. Micheva+ 2022)
- Galactic chemical compositions (e.g. Bresolin+ 2007)
- Distance candles (Kudritzki+ 2003)
- Galactic dynamical evolution (e.g. Kudritzki+ 2016)

# Resolved stellar population in the Local Group with MUSE:

## **NGC300 (2 Mpc)**



(Jost+ in prep.)





# **Chemical composition**

FASTWIND model - BlueMUSE (Teff 25000 K, S/N = 100)



# **Binary fraction and Rotation**



**Role of duplicity in the stellar evolution (e.g. Wang+ 2020) :** 

- Spectroscopic binary fraction
  - Limited by MUSE spectral resolution ~ 60 km/s
  - Close and contact massive binary detection (e.g. Almeida+ 2015)

## Stellar evolution of massive stars



### Goals:

- Study the stellar formation and evolution of the most massive stars:
  - Determine stellar properties (e.g effective temperature, gravity, etc).
  - Chemical composition analysis
- Map the interaction of massive stars with the ISM
- Explore the kinematics of the stellar cluster.

- Ionization ratios for temperature (e.g. SiII4552/SiII4128), Balmer line widths for gravity.
- Key transitions for abundance measurements, e.g., N (4614), O ( 4448), C ( 4267), Si, Mg (4481) and Fe (Teff  $\leq$  10kK)
- Mapping of HII region (e.g. density, temperature) link stellar feedback (ionisation/winds) to ISM

### **Wolf-Rayet massive stars**





### Goals:

- Caracterise WR pop to constraint stellar evol. models
- WN/WC as a function of galactic environments

- Cover both the blue and red bump
- Stellar winds features: OIV 3411-34, CIII 4650, He II 4686

## HII regions (SNRs, and PNe) in the Local Volume:



### Goals:

- Census of the stellar and star cluster content
- Quantify physical properties (ne, Te)
- Trace abundance patterns and enrichment
- Kinematics

- N\_e → [OII] 3729,3726, [CI III] 5518,5535, [Ar IV]4740,4711 but also [SII]6716,6731
- T\_e → [OIII]4363,4958,5007; [NeIII] 3343,3968,3869 but also [NII] 5755,6583,6548 (with MUSE)
- High resolution spectral power will enable to disentangle kinematics (HII regions kinematics are <10 km/s so spectral resolution of 35 km/s)</li>

## **Evolved stars and stellar clusters**

### **Goals:**

- Stars and Star clusters ages/metallicities/chemical composition
- Stellar kinematics (from single stars in low density fields to stellar pop.)
- Separate and understand the nature of multi-populations in globular clusters (GC)

- Mg triplet at 517 nm important for kinematics, the reddest line of interest is the NaD at 5890 (MUSE)
- **NH molecular band at 336 nm** important to discern multiple populations in GCs. Extend investigations of multiple populations from red giants to turn-off and main sequence stars.
- Call H & K lines, as well as the strong diffuse interstellar molecular bands at 4430 A

