BlueMUSE Data Analysis Software – DAS Formerly Advanced Data Products (Software) – ADP(S)

Angela Adamo (DAS WP lead) & Matthew Hayes Stockholm University, dept of Astronomy & OKC

Why do we want Data Analysis Software

i. Facilitate science. Automatic identification and cataloging of *everything* seen by BlueMUSE (MUSE).

ii. Data volumes of Large Format-IFUs are enormous:
3.5 Mvoxels for MUSE & 2.5 M for BlueMUSE
20,000 cMpc³ for a MUSE survey & 9500 for BlueMUSE

iii. Targets are diverse. Surveys find: many things you want for your science many things you don't want for your science

iv. Efficiency: Assemble suite of software for all (e.g. Source Detection; talk by R.Bacon yesterday). *DAS does not prevent people from developing own algorithms.*

v. Maximize the use of BlueMUSE data in the scientific community (easy to access and analyse \rightarrow increase discovery space)

vi. motivate ESO investments and return

What should Data Analysis Software be?

i. General enough to be a useful product to many. A valuable community resource

ii. Simple & robust enough to work reliably on majority of BlueMUSE/MUSE (and WST) datacubes

iii. Something we can use immediately to optimize our GTO data

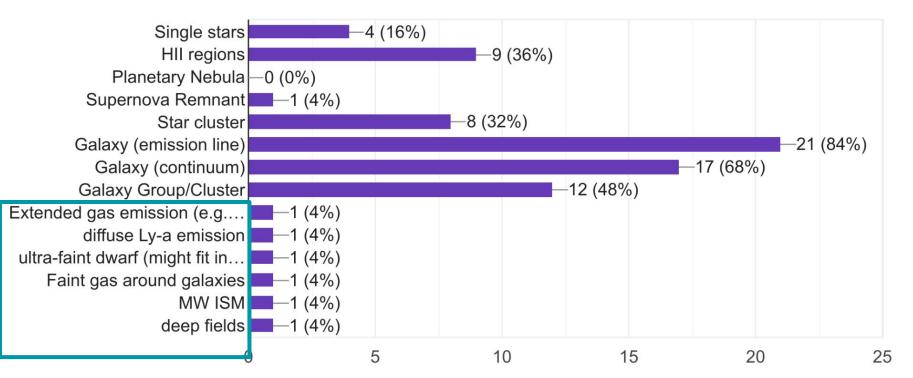
Work Package Status

- Begun writing a Roadmap
 - Introduction
 - Module Description
 - Interaction with DRS
 - I/O & Libraries
 - Roadmap & FTE estimates
 - Example Use Cases
 - Risk Analysis

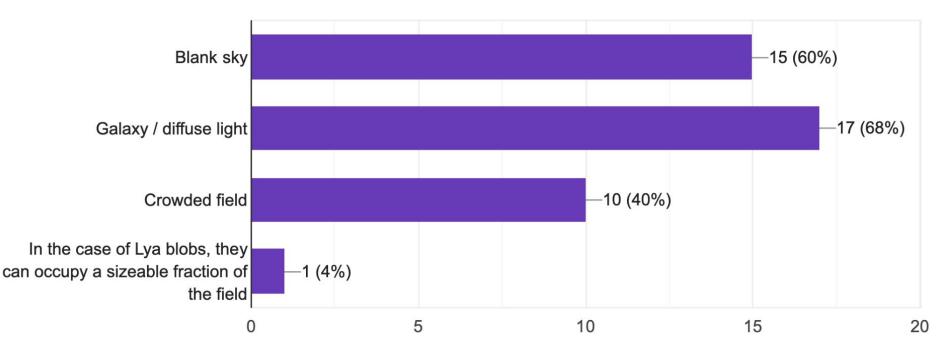
• Complete first version will be available by Oct 2024

Today's objective

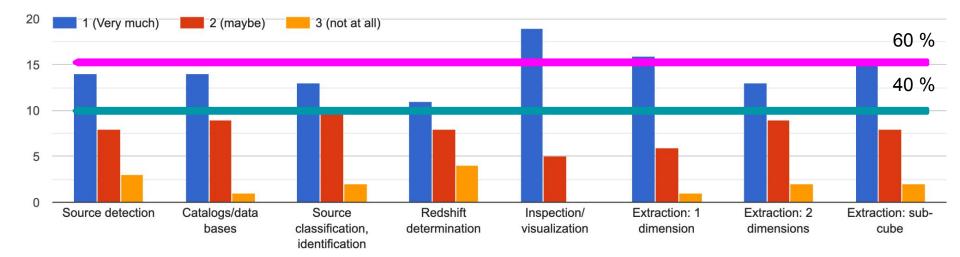
i. Status report: structure of DAS and workflow


ii. Look for missing things, develop/improve structure of proposed DAS, start to define minimum requirements

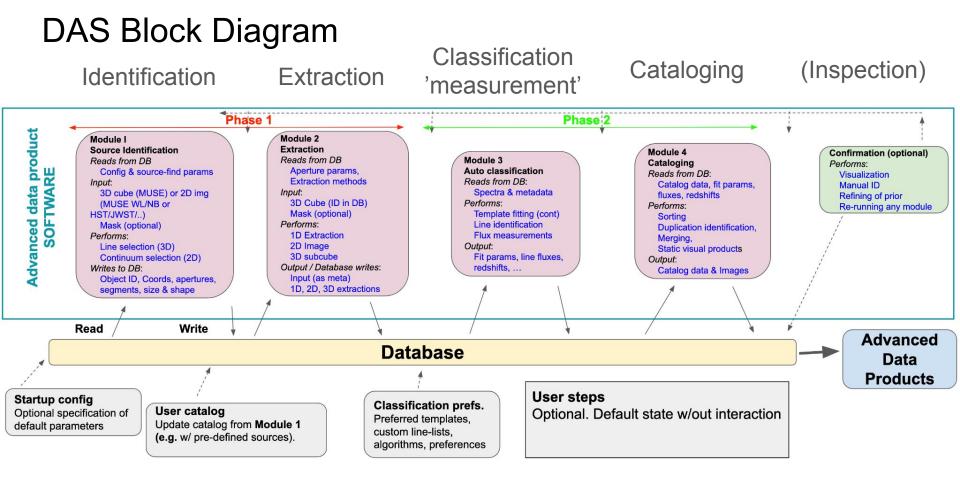
iii. Identify other consortium members to develop and review DAS


Goal: identify what we (~user community) think we need and we do not have yet

Received 25 responses (~80 science team members)


What type of objects will be targeted in your science? [tick all that apply] 25 responses

What is the background around your source / crowdedness of your field ²⁵ responses


What kind of ADP would support your science. 1 = 'I really want this' 3 = 'I am certain I will never use this'

Free text answers

Beyond the above: what ADP (software/product) could be useful for your science and/or broader application in the community

- 1. Extraction of stellar spectra on top of ionized gas.
- 2. narrow-band images, list of emission line fluxes, associations to other catalogs (e.g. Hubble, Chandra, etc.), in deep fields: extracted SED info stellar masses, SFRs, E(B-V)...
- 3. In case of observations of (deep) fields, catalogs containing redshifts and cross-correlated with HST or JWST observations.
- 4. 1D extraction would only be on regions of interest, probably not automatic. Not sure if "redshift" here would also cover 2D maps of velocities/kinematics... MaNGA-like data products would be cool.
- 5. A unified format (fits, etc) for all sources etc.
- 6. Matching cubes to HST and JWST imaging at sub-galactic scale
- 7. Adaptive kernel smoothing

Note: No algorithms are decided. Use most appropriate at time of development

Module I Source Identification Reads from DB Config & source-find params Input: 3D cube (BlueMUSE) or 2D img (BlueMUSE WL/NB or HST/JWST/..) Mask (optional) Performs: Line selection (3D) Continuum selection (2D) Writes to DB: Object ID, Coords, apertures, segments, size & shape

Module 2 Extraction Reads from DB Aperture params, **Extraction methods** Input: 3D Cube (ID in DB) Mask (optional) Performs: **1D Extraction** 2D Image 3D subcube Output / Database writes: Input (as meta) 1D, 2D, 3D extractions

Module 3 Auto classification Reads from DB: Spectra & metadata Performs: Template fitting (cont) Line identification Flux measurements Output: Fit params, line fluxes, redshifts, ...

Module 4 Cataloging Reads from DB: Catalog data, fit params, fluxes, redshifts Performs: Sorting Duplication identification, Merging, Static visual products Output: Catalog data & Images

Confirmation (optional) Performs: Visualization Manual ID Refining of prior Re-running Module 3

Example Use Cases

i. A Ly-alpha emitter survey

Blank sky survey observation \rightarrow Emission line detection \rightarrow 1D spectral extraction & 2D NB images \rightarrow Line identification \rightarrow Classification \rightarrow redshift \rightarrow Flux measurements \rightarrow Cataloging.

ii. A survey for quenched galaxies

Blank sky survey observation \rightarrow Continuum detection \rightarrow 1D spectral extraction & 2D BB images \rightarrow Template fitting – Classification \rightarrow redshift \rightarrow Magnitude measurements \rightarrow Cataloging.

iii. Search for planetary nebulae

Galaxy observation \rightarrow Emission line detection \rightarrow 1D spectral extraction & 2D NB images for visualization \rightarrow Line identification \rightarrow Classification \rightarrow velocity \rightarrow Flux measurements \rightarrow Cataloging.

iv. Spectral classification of pre-identified sources in NGC 0987654

Galaxy observation \rightarrow No detection, but locations and apertures provided \rightarrow 1D spectral extraction & 2D NB images for visualization \rightarrow Line identification \rightarrow Classification \rightarrow velocity \rightarrow Flux measurements \rightarrow Cataloging.

Possible Risks

i. DAS is not taken up broadly by the community

ii. DAS will not be accurate/specific enough

iii. Not sufficiently general/broad or adaptable enough

Solutions

- Key point: I didn't say anything that has not been done before!
- Publish widely, ASCL, packaged for installers, distributed with example workbooks.
- MPDAF & similar tools have been used.
- Use extensively on GTO data & publicize.
- ... More please !