# Spatially resolved analysis of stellar feedback and ionised gas properties in ESO 400-43

# Augusto E. Lassen

Collaborators: A. Adamo, A. Bik, R. Riffel, A. Chies-Santos, G. Östlin, P. Papaderos











## Contents

- Brief introduction
- Ongoing analysis of the BCD ESO 400-43
- Benefits of using BlueMUSE for gas-phase metallicity analysis

# **Blue Compact Dwarf Galaxies**

- Compact with elevated rates of Star-Formation
- Low stellar masses ( $\leq 10^9 M_{\odot}$ )
- Local analogues of high-z galaxies
  - Local LyC leakers Analogues of the galaxies responsible for re-ionization?
- MUSE allows for spatially resolved studies of
  - Ongoing SF processes (including stellar winds, outflows etc.)
  - Kinematics and dynamics of the ionised gas
  - Stellar populations

#### Haro 11



Menacho+19

# The target



**Redshift**  $z = 0.0194 \pm 2 \times 10^{-4} (d_1 \sim 89 \text{ Mpc})$ 

Stellar mass (1.0  $\pm$  0.3) x 10  $^9$  M  $_{\odot}$  [Bergvall & Jörsäter, 1988]

#### <u>MUSE</u>

- Adaptive Optics (AO) system
- Wide Field Mode (WFM)  $\rightarrow$  FoV = 1 arcmin<sup>2</sup>

#### <u>HST</u>

• 4 broad bands (F336W, F438W, F606W, F814W) + 1 narrow band (F665N)

# The target



# Kinematics of the ionised gas

#### SPS with pPXF to model the continuum

Voronoi binning on the continuum (5020 – 5060 Å) to (SNR)<sub>T</sub> = 150. Production of "pure gas" cube

#### **Kinematics**

• Single gaussian fit to H $\alpha$  line profile. Voronoi binning to (SNR)<sub>T</sub> = 10 on H $\alpha$  emission.



# Emission-line maps

#### **Correction for extinction**

Balmer decrement assuming case B of recombination







# **SED** fitting









# Spatially resolved BPT diagnostic diagrams



### **Gas-phase metallicity**

- T<sub>e</sub> estimate via [S III] λ6312,9069  $\Rightarrow T_e = 1.077^{+0.109}_{-0.116} \ [10^4 \ K]$
- n<sub>e</sub> estimate via [S II] λ6716,31  $\Rightarrow$   $n_e = 126.6^{+105.1}_{-89.5}$  [cm<sup>-3</sup>]



43<sup>s</sup>

42<sup>s</sup>

RA





Secondary effect of U on metallicity indicator?



Pilyugin+12

# Using BlueMUSE to deepen our understanding on the low-metallicity ISM of ESO 400-43



Detection of [O III]  $\lambda$ 4363 is feasible and allows to study ESO 400-43 ISM further out

- How real is the discrepancy of the gas-phase metallicity in the outskirts?
- Is the anti-correlation with Hα driven by the U dependence of the calibrator?
- Detection of [O II] λλ3726,29
  - Alternative determination of O<sup>+</sup>/H<sup>+</sup> (now relying on [O II]  $\lambda\lambda$ 7319,30)
  - Full description of the 3 temperature zones
    (h: [O III] λ4363, m: [S III] λ6312, I:[O II] λλ3726,29)
  - Test T<sub>e</sub> T<sub>e</sub> relations in the regime of metal-poor ISM of our BCD

# Thank you very much!

Questions?



