On the escape of LyC from galaxies The LyC nebular emission contribution

What is Reionisation? Why is it important?

- major phase transition in the history of the Universe strong impact on galaxy formation and evolution * main unknown : the nature of the sources of Reionization

Constraints on their LyC spectrum

Observations:

Since 2016, >100 LyC observations Green Peas: 15/20 LyC Emitters, fesc(LyC) 2-73% Izotov+16a,b, Schaerer+16, Verhamme+17 Izotov+18a,b, Izotov+21

Since 2016, >100 LyC observations Low-z Lyman Continuum Survey (LzLCS) Flury+22a,b, Saldana-Lopez+22, Chisholm+22, Trebitsch+23

Since 2016, >100 LyC observations Low-z Lyman Continuum Survey (LzLCS) Flury+22a,b, Saldana-Lopez+22, Chisholm+22, Trebitsch+23

Since 2016, >100 LyC observations **Keck Lyman Continuum Spectroscopic Survey (LzLCS)** Steidel+18

Stacked UV Keck spectra, shape of LyC emission/

First LyC detection at 600 angstrom From a galaxy at z~1.42 with AstroSat, Saha+20

First LyC detection at 600 angstrom From a galaxy at z~1.42 with AstroSat, Saha+20

LyC at z~2-3 from LyC monsters Chavez-Marques+21,22

Observed LyC spectral distributions look different from attenuated stellar LyC

Observed LyC spectral distributions look different from attenuated stellar LyC LyC nebular emission ?

LyC nebular emission **Cooling emission from ionised gas that recombines**

LyC nebular emission Simmonds, Verhamme et al accepted

CLOUDY models:

Ionising source: BPASS spectra

Cloud gas: 'ISM' metals+ dust

16 < log(NHI) < 19

LyC nebular emission Simmonds, Verhamme et al accepted

Monochromatic escape fractions

Anne Verhamme, BlueMUSE science meeting, 24.04.2024

Monochromatic luminosity boost

LyC escape fractions with nebular emission

Purple -> stellar + nebular photons, grey -> stellar only photons

Evolution of fesc with NHI:

it counts at intermediate regimes, 0 < fesc < 1

Integrated escape fractions not much affected, but fesc(800 < lambda <912) more, and fesc(900) extremely

Anne Verhamme, BlueMUSE science meeting, 24.04.2024

At extreme regimes $(\log(NHI) = 16, \text{ fesc} = 1 \text{ or } \log(NHI) = 19, \text{ fesc} = 0)$, the contribution of LyC nebular emission is negligible,

LyC boost in luminosity

Implications on the simulations side

Fesc and boost integrated over the three bins of ionising photons: HI, HeI, HeII

Negligeable effects on 2 high-energy bins, important for HI bin

Implications on the observations side

Neither the wavelength integrated boost nor fesc correlate with f900/f1100

Implications on the observations side

Conclusions on LyC nebular contribution

- Lyman bump predictions
- This nebular emission has a complex spectral distribution (free-bound + lines), dependent on the intrinsic stellar LyC distribution and the physical conditions in the gas of the galaxy
- As a consequence, escape fraction measurements strongly depend on wavelength
- Cosmologically relevant wavelength integrated boosts and escape fractions are not increased dramatically by adding this nebular contribution. Still, boost of 1.5 for the HI bin for galaxies with ~10% stellar escape)
- LyC observations at ~900 A are most likely dominated by nebular LyC photons, and not stellar, depending on log(NHI)
- We propose to measure the f700/f1100 ratio to recover wavelength integrated escape fractions from observations

Anne Verhamme, BlueMUSE science meeting, 24.04.2024

• In LyC leaking galaxies, LyC nebular emission will also escape, see Inoue 2010, 2011

Observing LyC leakers with BlueMUSE

LyC emitters are Lya bright, their Lya peaks separation correlates with fesc(LyC)

Maji et al, 2022

Anne Verhamme, BlueMUSE science meeting, 24.04.2024

Richard et al, 2019

006 σ Ó

Observing LyC leakers with BlueMUSE

Perspectives, next steps

Use BlueMUSE ETC to estimate the necessary observational time to detect LyC,

knowing Muv, and assuming different fLyC/f1100 ratios

- Use UV LFs to determine the number of galaxies brighter than Muv per FoV
- Use IGM attenuation simulations ?
- Assume a fraction of leakers, 10% as in Steidel+18?, to decide a survey strategy:
 - Only extreme deep fields will allow individual detections
 - Stacks of all medium deep data
 - Target crowded fields ? Rui's objects ? Lensed fields ?

