Using Lyman- α to probe LyC escape from galaxies

Anne Verhamme

Assistant Professor, Geneva University Associate Researcher, CRAL Lyon

Simulations and Observations: complementary approaches to understand the nature of the sources of cosmic reionisation

European Research Council Established by the European Commission

What is Cosmic Reionization? Why is it important?

- * major phase transition in the history of the Universe
- * strong impact on galaxy formation and evolution
- * main unknown : the nature of the sources of Reionization

Observing the sources of cosmic Reionization in LyC?

- * Intergalactic medium (IGM) opacity increases with redshift
- * direct detection of LyC impossible from galaxies at z > 6

Observing the sources of cosmic Reionization in LyC?

- * Intergalactic medium (IGM) opacity increases with redshift
- * direct detection of LyC impossible from galaxies at z > 6
- ightarrow need for indirect diagnostics of LyC leakage from galaxies

Ly α escape from galaxies : strong line

M. Dijkstra, Saas Fee Advanced School 2016

~7-40% (!) of bolometric luminosity of young galaxies in Lya emission line

Ly α escape from galaxies : to the highest redshifts

Anne Verhamme

Ly α escape from galaxies : resonant line

The basics of Ly α RT : kinematics

* Ly α is never tracing line of sight velocity, as an absorption line would do, but the bulk velocity of the scattering medium with respect to the Ly α source

The basics of Ly α RT : density

* Ly α spectrum= distribution of the minimun necessary shifts for escape : always follows/traces the path of least opacity

effect of density of the scattering medium

The basics of Ly α RT through expanding shells

Verhamme+15

synthetic Ly α spectra from expanding shells

350 Vexp = 50 km/s log(NH) = 16.0 300 b = 20 km/s log(NH) = 18.0 250 log(NH) = 18.0 250 log(NH) = 18.0 250 log(NH) = 19.0 100(NH) = 19.0 log(NH) = 19.3 100 log(NH) = 19.3 100 log(NH) = 19.4

km/s

200

0

correlation between peaks separation and NHI

-200

9/

400

- * the Ly α luminosity indicates LyC emission
- * the Ly α spectral shape indicates LyC emission
- * the Ly α spatial extend indicates LyC emission
- * BlueMUSE : what fraction of LAEs at $z{\sim}$ 3 to 3.8 are LCEs ?
- * BlueMUSE : test MgII properties of LCEs at $z\sim 0.3$

SPHINX : RHD cosmological simulations of reionisation

Rosdahl+18

- * full RHD
- 10pc resolution
- Published runs (Rosdahl+18) : 5 and 10 cMpc boxes.
- New SPHINX20 has reached z=6.15 in 20 cMpc.

SPHINX : RHD cosmological simulations of reionisation

Larger binary fractions => more ionizing photons are emitted after the starforming clouds are disrupted, i.e. in an optically thin environment.

BlueMUSE sw

Anne Verhamme

probing LyC escape

Ly α luminosity correlates with LyC luminosity

Moupiya Maji et al in prep.

Ly α properties of a sample of virtual galaxies

- * from the SPHINX RHD simulation Rosdahl+18
- * Ly α RT simulations done with RASCAS Michel-Dansac+20
- $^{\star}\,\sim$ 2000 galaxies with masses M $>10^{6} M_{\odot}$
- * integrated quantities : Lylpha budget

Anne Verhamme

Ly α luminosity correlates with LyC luminosity

Moupiya Maji et al in prep.

Ly α properties of a sample of virtual galaxies

- * from the SPHINX RHD simulation Rosdahl+18
- * Ly α RT simulations done with RASCAS Michel-Dansac+20
- $^{*}\,\sim$ 2000 galaxies with masses M $>10^{6} M_{\odot}$
- * integrated quantities : Ly α budget

Anne Verhamme

Ly α spectral shape correlate with LyC escape

Verhamme+15, figures adapted from Erb15, Jaskot+14

BlueMUSE sw

Anne Verhamme

probing LyC escape

Green Peas : 11/11 LyC emitters, fesc(Lyc) 2-73%

Izotov+16ab, Schaerer+16, Verhamme+17, Chisholm+17, Izotov+18ab

OIII/OII > 4

Green Peas : 11/11 LyC emitters, fesc(Lyc) 2-73%

Izotov+16ab, Schaerer+16, Verhamme+17, Chisholm+17, Izotov+18ab

LyC emitters should have no Ly α halo

Marchi+17, Kerutt+ in prep

Fig. 3. Flux density ratios evaluated from the stacks of the samples in the y-axis (blue dots) and from the complementary samples (magenta dots) as indicated in Table 1. The lavender vertical band is the 1σ confidence interval evaluated for the total sample of 201 galaxies.

Searching for LyC emission from $z \sim 3$ to 4 LAEs with MUSE

Kerutt+ in prep, see also Naidu+17 for similar $z\sim 2$ study

we find 6 individual candidates

MARIA Con MARIA Con MARIA Con Image: Constraint of the constrai

Selection

Searching for LyC emission from $z \sim 3$ to 4 LAEs with BlueMUSE

BlueMUSE sw

Anne Verhamme

MgII $\lambda\lambda$ 2796, 2803Å : new indirect tracer for LyC?

Henry+18, w/ Verhamme, see also Chisholm+20

Conclusions : Searching for LyC emitters wiht BlueMUSE

- Deep Fields : long integration times required to reach very faint flux limits (f900/f1500 < 0.1 from Steidel+18)
- * Statistics : the bigger the field of view, the better
- * Spectral resolution : R \sim 3500 enough to resolve small peaks separation in Ly α .
- * probing the LyC shape on long wavelengths : the lower the blue cut off the better to probe lyC at $\lambda < 800$ Å.